負(fù)的另外半波的整流電壓?! ∪绱酥貜?fù)下去,結(jié)果在Rfz 上便得到全波整流電壓。其波形圖和全波整流波形圖是一樣的。從圖中還不難看出,橋式電路中每只二極管承受的反向電壓等于變壓器次級(jí)電壓的最大值,比全波
2018-10-15 15:59:10
電阻低,通道電阻高,因此具有驅(qū)動(dòng)電壓即柵極-源極間電壓Vgs越高導(dǎo)通電阻越低的特性。下圖表示SiC-MOSFET的導(dǎo)通電阻與Vgs的關(guān)系。導(dǎo)通電阻從Vgs為20V左右開(kāi)始變化(下降)逐漸減少,接近
2018-11-30 11:34:24
Si-MOSFET大得多。而在給柵極-源極間施加18V電壓、SiC-MOSFET導(dǎo)通的條件下,電阻更小的通道部分(而非體二極管部分)流過(guò)的電流占支配低位。為方便從結(jié)構(gòu)角度理解各種狀態(tài),下面還給出了MOSFET的截面圖
2018-11-27 16:40:24
1. 器件結(jié)構(gòu)和特征 Si材料中越是高耐壓器件,單位面積的導(dǎo)通電阻也越大(以耐壓值的約2~2.5次方的比例增加),因此600V以上的電壓中主要采用IGBT(絕緣柵極雙極型晶體管)。 IGBT
2023-02-07 16:40:49
采用IGBT這種雙極型器件結(jié)構(gòu)(導(dǎo)通電阻變低,則開(kāi)關(guān)速度變慢),就可以實(shí)現(xiàn)低導(dǎo)通電阻、高耐壓、快速開(kāi)關(guān)等各優(yōu)點(diǎn)兼?zhèn)涞钠骷?. VD - ID特性SiC-MOSFET與IGBT不同,不存在開(kāi)啟電壓,所以
2019-04-09 04:58:00
作的。全橋式逆變器部分使用了3種晶體管(Si IGBT、第二代SiC-MOSFET、上一章介紹的第三代溝槽結(jié)構(gòu)SiC-MOSFET),組成相同尺寸的移相DCDC轉(zhuǎn)換器,就是用來(lái)比較各產(chǎn)品效率的演示機(jī)
2018-11-27 16:38:39
)可能會(huì)嚴(yán)重影響全局開(kāi)關(guān)損耗。針對(duì)此,在SiC MOSFET中可以加入米勒箝位保護(hù)功能,如圖3所示,以控制米勒電流。當(dāng)電源開(kāi)關(guān)關(guān)閉時(shí),驅(qū)動(dòng)器將會(huì)工作,以防止因柵極電容的存在,而出現(xiàn)感應(yīng)導(dǎo)通的現(xiàn)象。圖3
2019-07-09 04:20:19
柵極電壓,在20V柵極電壓下從幾乎300A降低到12V柵極電壓時(shí)的130A左右。即使碳化硅MOSFET的短路耐受時(shí)間短于IGTB的短路耐受時(shí)間,也可以通過(guò)集成在柵極驅(qū)動(dòng)器IC中的去飽和功能來(lái)保護(hù)SiC
2019-07-30 15:15:17
的快速充電器等的功率因數(shù)校正電路(PFC電路)和整流橋電路中。2. SiC-SBD的正向特性SiC-SBD的開(kāi)啟電壓與Si-FRD相同,小于1V。開(kāi)啟電壓由肖特基勢(shì)壘的勢(shì)壘高度決定,通常如果將勢(shì)壘高度
2019-03-14 06:20:14
采用IGBT這種雙極型器件結(jié)構(gòu)(導(dǎo)通電阻變低,則開(kāi)關(guān)速度變慢),就可以實(shí)現(xiàn)低導(dǎo)通電阻、高耐壓、快速開(kāi)關(guān)等各優(yōu)點(diǎn)兼?zhèn)涞钠骷?. VD - ID特性SiC-MOSFET與IGBT不同,不存在開(kāi)啟電壓,所以
2019-05-07 06:21:55
SiC-MOSFET的構(gòu)成中,SiC-MOSFET切換(開(kāi)關(guān))時(shí)高邊SiC-MOSFET的柵極電壓產(chǎn)生振鈴,低邊SiC-MOSFET的柵極電壓升高,SiC-MOSFET誤動(dòng)作的現(xiàn)象。通過(guò)下面的波形圖可以很容易了解這是
2018-11-30 11:31:17
免 MOSFET 的誤工作,但這種寄生電感的影響是三種主要寄生電感中最小的。整個(gè)器件的過(guò)沖電壓通常由功率回路電感(有時(shí)也稱(chēng)為開(kāi)關(guān)回路電感)造成,而這會(huì)產(chǎn)生高開(kāi)關(guān)損耗。共源極電感會(huì)在開(kāi)關(guān)瞬變過(guò)程中產(chǎn)生對(duì)柵極驅(qū)動(dòng)
2022-03-24 18:03:24
IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動(dòng)器和其它系統(tǒng)中的開(kāi)關(guān)元件。柵極是每個(gè)器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對(duì)于IGBT,它們被稱(chēng)為集電極
2021-01-27 07:59:24
摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動(dòng)器和其它系統(tǒng)中的開(kāi)關(guān)元件。柵極是每個(gè)器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對(duì)于IGBT,它們被稱(chēng)為
2021-07-09 07:00:00
可以理解成半橋就是在拓?fù)渖希讶?b class="flag-6" style="color: red">橋拓?fù)淙∑湟话雴幔咳绻?b class="flag-6" style="color: red">橋是2個(gè)橋臂4個(gè)開(kāi)關(guān)管,那么半橋就是1個(gè)橋臂2個(gè)開(kāi)關(guān)管?推挽電路和半橋電路是等價(jià)的嗎?還有橋式電路也分橋式整流和橋式逆變吧?謝謝!
2020-07-20 08:10:11
,而這個(gè)電流并沒(méi)有通過(guò)變壓器負(fù)載。因此,在兩個(gè)控制開(kāi)關(guān)K1和K2同時(shí)處于過(guò)渡過(guò)程期間,兩個(gè)開(kāi)關(guān)器件將會(huì)產(chǎn)生很大的功率損耗。為了降低控制開(kāi)關(guān)過(guò)渡過(guò)程產(chǎn)生的損耗,一般在半橋式開(kāi)關(guān)電源電路中,都有意讓兩個(gè)
2019-05-15 10:57:12
的產(chǎn)生機(jī)理 由功率MOSFET的等效電路可知,3個(gè)極間均存在結(jié)電容,柵極輸入端相當(dāng)于一個(gè)容性網(wǎng)絡(luò),驅(qū)動(dòng)電路存在著分布電感和驅(qū)動(dòng)電阻,此時(shí)的橋式逆變電路如圖1所示。以上管開(kāi)通過(guò)程為例,當(dāng)下管V2已經(jīng)完全
2018-08-27 16:00:08
克服了全波整流電路要求變壓器次級(jí)有中心抽頭和二極管承受反壓大的缺點(diǎn),但多用了兩只二極管。在半導(dǎo)體器件發(fā)展快,成本較低的今天,此缺點(diǎn)并不突出,因而橋式整流電路在實(shí)際中應(yīng)用較為廣泛。 (520101)
2021-05-13 07:31:16
,只要增加兩只二極管口連接成"橋"式結(jié)構(gòu),便具有全波整流電路的優(yōu)點(diǎn),而同時(shí)在一定程度上克服了它的缺點(diǎn)。橋式整流二極管的作用:1、將交流發(fā)電機(jī)產(chǎn)生的交流電變?yōu)橹绷麟?,以?shí)現(xiàn)向用電設(shè)備
2017-12-09 11:26:40
便得到全波整流電壓。其波形圖和全波整流波形圖是一樣的。從下圖中不難看出,橋式電路中每只二極管承受的反向電壓等于變壓器次級(jí)電壓的最大值,比全波整流電路小一半。橋式整流電路 橋式整流器的作用及選擇 橋
2011-10-20 11:09:52
`編輯-ZD45XT80整流橋是將整流管密封在一個(gè)外殼中,D45XT80全橋是將所連接的橋式整流電路的六個(gè)二極管密封在一起,構(gòu)成一個(gè)橋式全波整流電路。下面是D45XT80的詳細(xì)參數(shù)和圖片
2021-07-15 14:34:02
于開(kāi)關(guān)狀態(tài)下的漏源間電壓的突變會(huì)通過(guò)極間電容耦合到柵極而產(chǎn)生相當(dāng)幅度的VCS脈沖電壓.這一電壓會(huì)引起柵源擊穿造成管子的永久損壞,如果是正方向的VCS脈沖電壓,雖然達(dá)不到損壞器件的程度,但會(huì)導(dǎo)致器件
2009-08-20 18:24:15
,A點(diǎn)的電壓就是一個(gè)方波,最大值是12V+VBAT,最小值是12V(假設(shè)二極管為理想二極管)。A點(diǎn)的方波經(jīng)過(guò)簡(jiǎn)單的整流濾波,可提供高于12V的電壓,在驅(qū)動(dòng)控制電路中,H橋由4個(gè)N溝道功率MOSFET
2020-07-15 17:35:23
IGBT在半橋式電機(jī)控制中的使用IGBT的特性和功能在直流電壓為600V及以上的變流系統(tǒng)如交流電機(jī)、變頻器、開(kāi)關(guān)電源、照明電路、牽引傳動(dòng)等領(lǐng)域有著廣泛的應(yīng)用。IGBT,也就是絕緣柵雙極型晶體管,是由
2015-12-30 09:27:49
電路應(yīng)運(yùn)而生。LLC諧振變換器能夠在較寬的電源和負(fù)載波動(dòng)范圍內(nèi)調(diào)節(jié)輸出,而開(kāi)關(guān)頻率波動(dòng)卻較小。在整個(gè)工作范圍內(nèi),能夠獲得零電壓開(kāi)關(guān)(ZVS)半橋LLC諧振變換器LLC電路MOSFET應(yīng)用不同于PFC
2019-09-17 09:05:04
MOS管的開(kāi)關(guān)電路中柵極電阻R5和柵源極級(jí)間電阻R6是怎么計(jì)算的?在這個(gè)電路中有什么用。已知道VDD=3.7V,在可變電阻狀態(tài)中,作為開(kāi)關(guān)電路是怎么計(jì)算R5和R6?
2021-04-19 00:07:09
使用,BM6101是一款電流隔離芯片,通過(guò)它進(jìn)行兩級(jí)驅(qū)動(dòng)Mosfet管。而驅(qū)動(dòng)的電壓就是通過(guò)開(kāi)關(guān)電源調(diào)整得到的電壓,驅(qū)動(dòng)電路還如下圖黃框出提供了死區(qū)調(diào)整的電阻網(wǎng)絡(luò)。利用示波器在在這時(shí)對(duì)柵極源極電壓
2020-06-07 15:46:23
。碳化硅有優(yōu)點(diǎn)相當(dāng)突出。是半導(dǎo)體公司兵家必爭(zhēng)之地。應(yīng)用場(chǎng)景;評(píng)估板采用常見(jiàn)的半橋電路配置,并配有驅(qū)動(dòng)電路、驅(qū)動(dòng)電源、過(guò)電流保護(hù)電路及柵極信號(hào)保護(hù)電路等評(píng)估板的主要特點(diǎn)如下:? 可評(píng)估 TO-247-4L
2020-07-26 23:24:05
,Mosfet管的柵極輸入端相當(dāng)于是一個(gè)容性網(wǎng)絡(luò),因此器件在穩(wěn)定導(dǎo)通時(shí)間或者關(guān)斷的截止時(shí)間并不需要驅(qū)動(dòng)電流,但是在器件開(kāi)關(guān)過(guò)程中,柵極的輸入電容需要充電和放電,此時(shí)柵極驅(qū)動(dòng)電路必須提供足夠大的充放電脈沖電流
2020-07-16 14:55:31
要的通道間時(shí)序匹配和停滯時(shí)間。另一問(wèn)題是,高壓柵極驅(qū)動(dòng)器并無(wú)電流隔離,而是依賴(lài)IC的結(jié)隔離來(lái)分離高端驅(qū)動(dòng)電壓和低端驅(qū)動(dòng)電壓。在低端開(kāi)關(guān)事件中,電路中的寄生電感可能導(dǎo)致輸出電壓VS降至地電壓以下。發(fā)生這種
2018-07-03 16:33:25
整流器配置中的四個(gè)二極管是對(duì)AC電壓進(jìn)行整流的最簡(jiǎn)單、也是最常規(guī)的方法。在一個(gè)橋式整流器中運(yùn)行一個(gè)二極管可以為全橋整流器和汽車(chē)用交流發(fā)電機(jī)提供一個(gè)簡(jiǎn)單、劃算且零靜態(tài)電流的解決方案。不過(guò),雖然二極管通常
2018-09-03 15:32:01
時(shí),VT2管的柵極通過(guò)晶體管V3獲得電壓和電流,充電能力提高,因而開(kāi)通速度加快。b.保護(hù)功能圖2虛線(xiàn)框中,1N4744是柵源間的過(guò)壓保護(hù)齊納二極管,其穩(wěn)壓值為15 V。由于,功率MOSFET管柵源間的阻抗
2020-08-25 14:11:27
的電感和電容之外的雜散電感和電容。需要認(rèn)識(shí)到,SiC MOSFET 的輸出開(kāi)關(guān)電流變化率 (di/dt) 遠(yuǎn)高于 Si MOSFET。這可能增加直流總線(xiàn)的瞬時(shí)振蕩、電磁干擾以及輸出級(jí)損耗。高開(kāi)關(guān)速度還可能導(dǎo)致電壓過(guò)沖。滿(mǎn)足高電壓應(yīng)用的可靠性和故障處理性能要求。
2017-12-18 13:58:36
到交流電路時(shí),它可以使電路中的電流只向一個(gè)方向流動(dòng)。 ASEMI整流橋通常由單相橋式全波整流器的4個(gè)二極管組成和三相橋式全波整流器的6個(gè)二極管組成(ASEMI廠家都將其封裝在一個(gè)器件中,統(tǒng)稱(chēng)為整流橋,方便
2021-10-14 16:12:29
什么是單相橋式整流電路:電路中采用四個(gè)二極管,互相接成橋式結(jié)構(gòu)。利用二極管的電流導(dǎo)向作用,在交流輸入電壓U2的正半周內(nèi),二極管D1、D3導(dǎo)通,D2、D4截止,在負(fù)載RL上得到上正下負(fù)的輸出電壓;在負(fù)
2021-07-06 06:03:14
,基本保持不變。這些都是基于橋式電路解決漏電流的方法,近年來(lái)出現(xiàn)了一種雙Buck逆變器結(jié)構(gòu),這種逆變器具有無(wú)橋臂直通,體二極管不工作,雙極性工作等突出特點(diǎn),因而應(yīng)用廣泛。本文提出一種新型的三電平雙
2018-09-28 16:28:02
和CN4的+18V、CN3和CN6的-3V為驅(qū)動(dòng)器的電源。電路中增加了CGS和米勒鉗位MOSFET,使包括柵極電阻在內(nèi)均可調(diào)整。將該柵極驅(qū)動(dòng)器與全SiC功率模塊的柵極和源極連接,來(lái)確認(rèn)柵極電壓的升高情況
2018-11-27 16:41:26
的平均電流(即正向電流)為:ID=1/2 IL=1/2*UL/RL =0.45*U2/RL加在二極管兩端的反向電壓為:URM=2E2=2√2*U2二、橋式整流電路橋式整流電路輸入電壓E2為正半周時(shí),對(duì)D1
2023-02-20 09:11:33
柵極(Gate),漏極(Drain)和源極(Source)。功率MOSFET為電壓型控制器件,驅(qū)動(dòng)電路簡(jiǎn)單,驅(qū)動(dòng)的功率小,而且開(kāi)關(guān)速度快,具有高的工作頻率。常用的MOSFET的結(jié)構(gòu)有橫向雙擴(kuò)散型
2016-10-10 10:58:30
功率MOSFET的結(jié)構(gòu)特點(diǎn)為什么要在柵極和源極之間并聯(lián)一個(gè)電阻呢?
2021-03-10 06:19:21
通過(guò)變壓器負(fù)載。因此,在兩個(gè)控制開(kāi)關(guān)K1和K2同時(shí)處于過(guò)渡過(guò)程期間,兩個(gè)開(kāi)關(guān)器件將會(huì)產(chǎn)生很大的功率損耗。為了降低控制開(kāi)關(guān)過(guò)渡過(guò)程產(chǎn)生的損耗,一般在半橋式開(kāi)關(guān)電源電路中,都有意讓兩個(gè)控制開(kāi)關(guān)的接通和截止
2018-10-12 16:37:43
光耦合隔離器不會(huì)產(chǎn)生這種情況。為緩沖器供電的最直觀的方法,是為半橋的每一個(gè)浮動(dòng)區(qū)域提供專(zhuān)用的隔離式DC-DC轉(zhuǎn)換器。對(duì)于多引腳系統(tǒng),低端柵極驅(qū)動(dòng)器可以共享一個(gè)電壓源,只要有足夠的電流輸出即可,如圖2中
2018-10-16 13:52:11
單相橋式整流電路輸出電壓的波形是怎樣的?三相鼠籠式異步電動(dòng)機(jī)定子的繞組彼此互差多少的電角度呢?動(dòng)力控制電路通電測(cè)試的最終目的是什么?
2021-09-18 07:22:03
什么是單相橋式整流電路: 電路中采用四個(gè)二極管,互相接成橋式結(jié)構(gòu)。利用二極管的電流導(dǎo)向作用,在交流輸入電壓U2的正半周內(nèi),二極管D1、D3導(dǎo)通,D2、D4截止,在負(fù)載RL上得到上正下負(fù)的輸出
2018-10-15 16:36:20
,導(dǎo)致Cp上的電壓降低。反激開(kāi)關(guān)MOSFET 源極流出的電流(Is)波形的轉(zhuǎn)折點(diǎn)的分析。 很多工程師在電源開(kāi)發(fā)調(diào)試過(guò)程中,測(cè)的的波形的一些關(guān)鍵點(diǎn)不是很清楚,下面針對(duì)反激電源實(shí)測(cè)波形來(lái)分析一下。問(wèn)題一
2018-10-10 20:44:59
用的MOSFET必須具有一個(gè)小于等于3V的柵源電壓 (VGS) 閥值,以及低柵極電容。另外一個(gè)重要的電氣參數(shù)是MOSFET體二極管上的電壓,這個(gè)值必須在低輸出電流時(shí)為0.48V左右。德州儀器 (TI) 60V
2018-05-30 10:01:53
時(shí),光耦輸出三極管集電極為低電平,功放電路中三極管Q1截止、Q2導(dǎo)通,施加在IGBT柵極與發(fā)射極之間電壓為-9V,IGBT關(guān)斷。4、電源試驗(yàn)圖5(a)、(b)分別是輸出電流45A時(shí)全橋變換器兩個(gè)橋臂中點(diǎn)A
2018-10-19 16:38:40
和K2、K3同時(shí)處于過(guò)渡過(guò)程期間,4個(gè)開(kāi)關(guān)器件將會(huì)產(chǎn)生很大的功率損耗。為了降低控制開(kāi)關(guān)過(guò)渡過(guò)程產(chǎn)生的損耗,一般在全橋式開(kāi)關(guān)電源電路中,都有意讓兩組控制開(kāi)關(guān)的接通和截止時(shí)間錯(cuò)開(kāi)一小段時(shí)間。 4結(jié)論
2018-09-28 10:07:25
3所示,在基本無(wú)橋Boost APFC 電路上增加兩個(gè)快恢復(fù)二極管VD3和VD4. 圖3中,電阻Rs 為電感中的電流檢測(cè)電阻,使電流檢測(cè)電路減化。雖然Rs 在工作時(shí)會(huì)產(chǎn)生一定損耗,但只要阻值選擇
2018-09-28 16:29:47
來(lái)設(shè)置單極或雙極 PWM 柵極驅(qū)動(dòng)器延遲時(shí)間短,上升和下降時(shí)間短提供用于驅(qū)動(dòng)半橋的信號(hào)和電源反激式恒定導(dǎo)通時(shí)間,無(wú)需環(huán)路補(bǔ)償可以在 24V±20% 范圍內(nèi)寬松調(diào)節(jié)輸入此電路設(shè)計(jì)經(jīng)過(guò)測(cè)試并包含測(cè)試結(jié)果
2018-12-21 11:39:19
IGBT和SiC MOSFET的電壓源驅(qū)動(dòng)和電流源驅(qū)動(dòng)的dv/dt比較。VSD中的柵極電阻表示為Rg,控制CSD柵極電流的等效電阻表示為R奧特雷夫?! 膱D中可以明顯看出,在較慢的開(kāi)關(guān)速度(dv/dt
2023-02-21 16:36:47
MOSFET一般工作在橋式拓?fù)?b class="flag-6" style="color: red">結(jié)構(gòu)模式下,如圖1所示。由于下橋MOSFET驅(qū)動(dòng)電壓的參考點(diǎn)為地,較容易設(shè)計(jì)驅(qū)動(dòng)電路,而上橋的驅(qū)動(dòng)電壓是跟隨相線(xiàn)電壓浮動(dòng)的,因此如何很好地驅(qū)動(dòng)上橋MOSFET成了設(shè)...
2021-07-27 06:44:41
) MOSFET很難在圖騰柱PFC拓?fù)?b class="flag-6" style="color: red">中的連續(xù)導(dǎo)通模式(CCM)下工作,因?yàn)轶w二極管的反向恢復(fù)特性很差。碳化硅(SiC) MOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開(kāi)關(guān)性能、極小
2022-04-19 08:00:00
高壓驅(qū)動(dòng)器電路來(lái)實(shí)現(xiàn)所需要的通道間時(shí)序匹配和停滯時(shí)間。另一問(wèn)題是,高壓柵極驅(qū)動(dòng)器并無(wú)電流隔離,而是依賴(lài)IC的結(jié)隔離來(lái)分離高端驅(qū)動(dòng)電壓和低端驅(qū)動(dòng)電壓。在低端開(kāi)關(guān)事件中,電路中的寄生電感可能導(dǎo)致輸出電壓VS
2018-10-23 11:49:22
的一個(gè)潛在問(wèn)題是,僅有一個(gè)隔離輸入通道,而且依賴(lài)高壓驅(qū)動(dòng)器來(lái)提供通道間所需的時(shí)序匹配以及應(yīng)用所需的死區(qū)。另一問(wèn)題是,高壓柵極驅(qū)動(dòng)器并無(wú)電流隔離,而是依賴(lài)結(jié)隔離來(lái)分離同一IC中的上橋臂驅(qū)動(dòng)電壓和下橋臂驅(qū)動(dòng)
2018-10-16 16:00:23
電路來(lái)實(shí)現(xiàn)所需要的通道間時(shí)序匹配和停滯時(shí)間。另一問(wèn)題是,高壓柵極驅(qū)動(dòng)器并無(wú)電流隔離,而是依賴(lài)IC的結(jié)隔離來(lái)分離高端驅(qū)動(dòng)電壓和低端驅(qū)動(dòng)電壓。在低端開(kāi)關(guān)事件中,電路中的寄生電感可能導(dǎo)致輸出電壓VS降至地電壓
2018-09-26 09:57:10
中,它又分為全橋與半橋?! ∪?b class="flag-6" style="color: red">橋是由4只整流二極管按橋式全波整流電路的形式連接并封裝為一體構(gòu)成的,圖是其外形?! ∪?b class="flag-6" style="color: red">橋的正向電流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A
2018-11-28 11:05:12
整流橋是利用二極管的特性“單向?qū)щ娦浴?,?shí)現(xiàn)正向電流時(shí)導(dǎo)通負(fù)向電流關(guān)斷,從而達(dá)到交流變直流的整流效果。一、整流橋介紹:整流橋就是將整流管封在一個(gè)殼內(nèi)了。分全橋和半橋。全橋是將連接好的橋式整流電路
2015-11-27 18:09:57
觸發(fā)脈沖。 最簡(jiǎn)單的單脈沖晶閘管相控整流電路如圖1.2所示,控制觸發(fā)脈沖施加的時(shí)間就可以控制輸出電壓。2.單相橋式全控整流電路單相橋式全控整流電路的原理和以及在阻性負(fù)載情況下的...
2021-09-16 08:05:54
流過(guò)漏極和柵極之間的電容并流出柵極。驅(qū)動(dòng)器必須能夠接受此電流。這也是為什么外部柵極電阻必須由快速二極管并聯(lián)以防止該電流在電阻兩端產(chǎn)生過(guò)高電壓的原因之一。對(duì)于中型MOSFET,1 N 4150 可以完成
2023-02-20 16:40:52
開(kāi)路整流電路沒(méi)有直流電壓輸出。這是因?yàn)?b class="flag-6" style="color: red">橋式整流電路中各整流二極管的電流不能構(gòu)成回路,整流電路無(wú)法正常工作。任一只二極管開(kāi)路整流電路所輸出的單向脈動(dòng)直流電壓下降一半。這是因?yàn)榻涣鬏斎?b class="flag-6" style="color: red">電壓的正半周或負(fù)半周
2011-12-15 15:04:58
穩(wěn)壓值為15 V.由于,功率MOSFET管柵源間的阻抗很高,故工作于開(kāi)關(guān)狀態(tài)下的漏源間電壓的突變會(huì)通過(guò)極間電容耦合到柵極而產(chǎn)生相當(dāng)幅度的VCS脈沖電壓.這一電壓會(huì)引起柵源擊穿造成管子的永久損壞,如果是
2008-10-21 00:50:02
和 –4V 輸出電壓以及 1W(...)主要特色用于在半橋配置中驅(qū)動(dòng) SiC MOSFET 的緊湊型雙通道柵極驅(qū)動(dòng)器解決方案4A 峰值拉電流和 6A 峰值灌電流驅(qū)動(dòng)能力,適用于驅(qū)動(dòng) SiC
2018-10-16 17:15:55
本章將介紹最新的第三代SiC-MOSFET,以及可供應(yīng)的SiC-MOSFET的相關(guān)信息。獨(dú)有的雙溝槽結(jié)構(gòu)SiC-MOSFET在SiC-MOSFET不斷發(fā)展的進(jìn)程中,ROHM于世界首家實(shí)現(xiàn)了溝槽柵極
2018-12-05 10:04:41
SiCMOSFET具有出色的開(kāi)關(guān)特性,但由于其開(kāi)關(guān)過(guò)程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識(shí) SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作-前言”中介
2022-09-20 08:00:00
及原理 本充電器電路主要由市電整流濾波、自激加他激半橋轉(zhuǎn)換、PWM控制、電壓控制、電流控制、輸出整流濾波及顯示六部分組成。 整流濾波 市電220V/50Hz經(jīng)二極管D1~D4橋式整流、電容C5~C7
2011-01-12 10:33:10
柵極處獲得 20V,以便在最小 RDSon 時(shí)導(dǎo)通?! ‘?dāng)以0V關(guān)閉SiC MOSFET時(shí),必須考慮一種效應(yīng),即Si MOSFET中已知的米勒效應(yīng)。當(dāng)器件用于橋式配置時(shí),這種影響可能會(huì)出現(xiàn)問(wèn)題,尤其是
2023-02-24 15:03:59
電壓是整流前的0.9倍總結(jié):(1)畫(huà)圖時(shí)要注意4只整流二極管連接方法。(2)電源變壓器次級(jí)線(xiàn)圈不需要抽頭。(3)每一個(gè)半周交流輸入電壓期間內(nèi),有2只整流二極管同時(shí)串聯(lián)導(dǎo)通,另2只整流二極管截止。(4)橋式整流電路輸出波形是全波波形。
2020-05-29 07:58:47
`如圖1所示是負(fù)極性橋式整流電路。電路中的VD1~VD4四只整流二極管構(gòu)成橋式整流電路,T1是電源變壓器。電路結(jié)構(gòu)與正極性電路基本相同,只是橋式整流電路的接地引腳和直流電壓輸出引腳不同,兩只
2011-12-15 15:15:25
Q1的柵極、源極間電阻R1并聯(lián)追加電容器C2, 并緩慢降低Q1的柵極電壓,可以緩慢地使RDS(on)變小,從而可以抑制浪涌電流?!鲐?fù)載開(kāi)關(guān)等效電路圖關(guān)于Nch MOSFET負(fù)載開(kāi)關(guān)ON時(shí)的浪涌電流應(yīng)對(duì)
2019-07-23 01:13:34
) MOSFET很難在圖騰柱PFC拓?fù)?b class="flag-6" style="color: red">中的連續(xù)導(dǎo)通模式(CCM)下工作,因?yàn)轶w二極管的反向恢復(fù)特性很差。碳化硅(SiC) MOSFET采用全新的技術(shù),比Si MOSFET具有更勝一籌的開(kāi)關(guān)性能、極小
2022-05-30 10:01:52
IGBT/功率 MOSFET 是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動(dòng)器和其它系統(tǒng)中的開(kāi)關(guān)元件。柵極是每個(gè)器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對(duì)于IGBT,它們被稱(chēng)為
2018-10-25 10:22:56
Sanket Sapre摘要IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路、電機(jī)驅(qū)動(dòng)器和其它系統(tǒng)中的開(kāi)關(guān)元件。柵極是每個(gè)器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對(duì)
2018-11-01 11:35:35
參考Q1的懸空源極電壓。高端MOSFET源極上的電壓尖峰當(dāng)Q1和Q4接通時(shí),負(fù)載電流從Q1經(jīng)過(guò)負(fù)載流到Q4和地。當(dāng)Q1和Q4斷開(kāi)時(shí),電流仍然沿同一方向流動(dòng),經(jīng)過(guò)續(xù)流二極管D6和D7,在Q1的源極上產(chǎn)生
2018-10-24 10:28:10
引腳,并僅使用體二極管換流工作的電路。Figure 6 是導(dǎo)通時(shí)的漏極 - 源極間電壓 VDS 和漏極電流 ID 的波形。這是驅(qū)動(dòng)條件為 RG_EXT=10Ω、VDS=800V,ID 約為 50A
2020-11-10 06:00:00
中,我們將對(duì)相應(yīng)的對(duì)策進(jìn)行探討。關(guān)于柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識(shí) SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作”中已進(jìn)行了詳細(xì)說(shuō)明。
2021-06-12 17:12:002563 忽略SiC MOSFET本身的封裝電感和外圍電路的布線(xiàn)電感的影響。特別是柵極-源極間電壓,當(dāng)SiC MOSFET本身的電壓和電流發(fā)生變化時(shí),可能會(huì)發(fā)生意想不到的正浪涌或負(fù)浪涌,需要對(duì)此采取對(duì)策。 在本文中,我們將對(duì)相應(yīng)的對(duì)策進(jìn)行探討。 什么是柵極-源極電壓產(chǎn)生的
2021-06-10 16:11:442121 SiC MOSFET具有出色的開(kāi)關(guān)特性,但由于其開(kāi)關(guān)過(guò)程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識(shí) SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作-前言”中介紹的需要準(zhǔn)確測(cè)量柵極和源極之間產(chǎn)生的浪涌。
2022-09-14 14:28:53753 本文將介紹在SiC MOSFET這一系列開(kāi)關(guān)動(dòng)作中,SiC MOSFET的VDS和ID的變化會(huì)產(chǎn)生什么樣的電流和電壓。
2022-12-05 09:52:55890 從本文開(kāi)始,我們將進(jìn)入SiC功率元器件基礎(chǔ)知識(shí)應(yīng)用篇的第一彈“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作”。前言:MOSFET和IGBT等電源開(kāi)關(guān)元器件被廣泛應(yīng)用于各種電源應(yīng)用和電源線(xiàn)路中。
2023-02-08 13:43:22250 在探討“SiC MOSFET:橋式結(jié)構(gòu)中Gate-Source電壓的動(dòng)作”時(shí),本文先對(duì)SiC MOSFET的橋式結(jié)構(gòu)和工作進(jìn)行介紹,這也是這個(gè)主題的前提。
2023-02-08 13:43:23340 本文將針對(duì)上一篇文章中介紹過(guò)的SiC MOSFET橋式結(jié)構(gòu)的柵極驅(qū)動(dòng)電路及其導(dǎo)通(Turn-on)/關(guān)斷( Turn-off)動(dòng)作進(jìn)行解說(shuō)。
2023-02-08 13:43:23491 上一篇文章中,簡(jiǎn)單介紹了SiC MOSFET橋式結(jié)構(gòu)中柵極驅(qū)動(dòng)電路的開(kāi)關(guān)工作帶來(lái)的VDS和ID的變化所產(chǎn)生的電流和電壓情況。本文將詳細(xì)介紹SiC MOSFET在LS導(dǎo)通時(shí)的動(dòng)作情況。
2023-02-08 13:43:23300 上一篇文章中介紹了LS開(kāi)關(guān)導(dǎo)通時(shí)柵極 – 源極間電壓的動(dòng)作。本文將繼續(xù)介紹LS關(guān)斷時(shí)的動(dòng)作情況。低邊開(kāi)關(guān)關(guān)斷時(shí)的柵極 – 源極間電壓的動(dòng)作:下面是表示LS MOSFET關(guān)斷時(shí)的電流動(dòng)作的等效電路和波形示意圖。
2023-02-08 13:43:23399 在上一篇文章中,簡(jiǎn)單介紹了SiC功率元器件中柵極-源極電壓中產(chǎn)生的浪涌。從本文開(kāi)始,將介紹針對(duì)所產(chǎn)生的SiC功率元器件中浪涌的對(duì)策。本文先介紹浪涌抑制電路。
2023-02-09 10:19:15696 本文的關(guān)鍵要點(diǎn)?通過(guò)采取措施防止SiC MOSFET中柵極-源極間電壓的負(fù)電壓浪涌,來(lái)防止SiC MOSFET的LS導(dǎo)通時(shí),SiC MOSFET的HS誤導(dǎo)通。?具體方法取決于各電路中所示的對(duì)策電路的負(fù)載。
2023-02-09 10:19:16589 關(guān)于SiC功率元器件中柵極-源極間電壓產(chǎn)生的浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識(shí) SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作”中已進(jìn)行了詳細(xì)說(shuō)明,如果需要了解,請(qǐng)參閱這篇文章。
2023-02-09 10:19:17707 下面的電路圖是SiC MOSFET橋式結(jié)構(gòu)的同步式boost電路,LS開(kāi)關(guān)導(dǎo)通時(shí)的示例。電路圖中包括SiC MOSFET的寄生電容、電感、電阻,HS和LS的SiC MOSFET的VDS和ID的變化帶來(lái)的各處的柵極電流(綠色線(xiàn))。
2023-02-27 13:43:31486 忽略SiC MOSFET本身的封裝電感和外圍電路的布線(xiàn)電感的影響。特別是柵極-源極間電壓,當(dāng)SiC MOSFET本身的電壓和電流發(fā)生變化時(shí),可能會(huì)發(fā)生意想不到的正浪涌或負(fù)浪涌,需要對(duì)此采取對(duì)策。在本文中,我們將對(duì)相應(yīng)的對(duì)策進(jìn)行探討。
2023-02-28 11:36:50551 SiC MOSFET具有出色的開(kāi)關(guān)特性,但由于其開(kāi)關(guān)過(guò)程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識(shí) SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作-前言”中介
2023-04-06 09:11:46731 板布局注意事項(xiàng)。 橋式結(jié)構(gòu)SiC MOSFET的柵極信號(hào),由于工作時(shí)MOSFET之間的動(dòng)作相互關(guān)聯(lián),因此導(dǎo)致SiC MOSFET的柵-源電壓中會(huì)產(chǎn)生意外的電壓浪涌。這種浪涌的抑制方法除了增加抑制電路外,電路板的版圖布局也很重要。希望您根據(jù)具體情況,參考本系列文章中介紹的
2023-04-13 12:20:02814 SiC MOSFET具有出色的開(kāi)關(guān)特性,但由于其開(kāi)關(guān)過(guò)程中電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識(shí) SiC功率元器件“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作-前言”中介
2023-05-08 11:23:14644 MOSFET柵極電路電壓對(duì)電流的影響?MOSFET柵極電路電阻的作用? MOSFET(金屬-氧化物-半導(dǎo)體場(chǎng)效應(yīng)晶體管)是一種廣泛應(yīng)用于電子設(shè)備中的半導(dǎo)體器件。在MOSFET中,柵極電路的電壓和電阻
2023-10-22 15:18:121369 SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動(dòng)作
2023-12-07 14:34:17223 MOSFET柵極電路常見(jiàn)的作用有哪些?MOSFET柵極電路電壓對(duì)電流的影響? MOSFET(金屬氧化物半導(dǎo)體場(chǎng)效應(yīng)晶體管)是一種非常重要的電子器件,廣泛應(yīng)用于各種電子電路中。MOSFET的柵極電路
2023-11-29 17:46:40571
評(píng)論
查看更多