那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

兩種深度學(xué)習(xí)技術(shù)部署:在設(shè)備上在云端和邊緣

姚小熊27 ? 來源:TechWeb.com.cn ? 作者:TechWeb.com.cn ? 2020-12-09 11:18 ? 次閱讀

如今,有兩種可能的深度學(xué)習(xí)技術(shù)部署:直接在設(shè)備上在云端和邊緣。

由于對(duì)處理能力和內(nèi)存消耗的廣泛需求以及AI模型的規(guī)模,這些部署中的大多數(shù)依賴于云。盡管云部署使AI可以從高性能計(jì)算系統(tǒng)的功能中受益,但挑戰(zhàn)依然存在。需要將數(shù)據(jù)從設(shè)備來回發(fā)送到云以進(jìn)行處理會(huì)引起隱私問題,并且由于延遲,帶寬和連接性而存在限制。

這促使業(yè)界專注于邊緣AI的開發(fā),這是我在上一篇文章中談到的主題。這些工作主要圍繞引入用于訓(xùn)練AI模型的新方法進(jìn)行,這些方法可以減少占用空間,因此可以將這些模型直接部署在邊緣設(shè)備上。

邊緣AI將通過使智能設(shè)備實(shí)時(shí)做出真正自主的決策來解決深度云的不足,從而促進(jìn)深度學(xué)習(xí)。具體而言,這將消除了將所有數(shù)據(jù)連續(xù)發(fā)送到云或從云連續(xù)發(fā)送的需要,從而改善了隱私,帶寬和延遲限制。此外,新興的邊緣AI部署方法極大地提高了速度,功耗和內(nèi)存消耗,從而可以降低成本并限制對(duì)環(huán)境的影響。

一個(gè)人的利益不能被另一個(gè)人完全取代;因此,最具影響力的現(xiàn)實(shí)世界AI部署將是采用混合方法的部署:在云中和邊緣。但是混合方法是什么樣的呢?

混合部署的免費(fèi)工作流可獲得更好的結(jié)果

第一步是通過確定必須實(shí)時(shí)在邊緣進(jìn)行決策的用例,并通過可在云中進(jìn)行處理以進(jìn)行長(zhǎng)期分析和改進(jìn)的方案,來淘汰可最大化效率和可擴(kuò)展性的工作流程。

如果您在智能邊緣設(shè)備上部署深度學(xué)習(xí),那么在需要實(shí)時(shí)決策的情況下,例如自動(dòng)駕駛汽車,農(nóng)業(yè)無人機(jī)和系統(tǒng),攝像機(jī),移動(dòng)設(shè)備等。同時(shí),系統(tǒng)可以將數(shù)據(jù)上傳到云中以進(jìn)行存儲(chǔ)以及進(jìn)一步處理和分析,而這些處理和分析可以由功能更強(qiáng)大的引擎執(zhí)行。這將確保該系統(tǒng)可以實(shí)現(xiàn)大功率計(jì)算的優(yōu)勢(shì),并允許將云中的數(shù)據(jù)與其他系統(tǒng)中的數(shù)據(jù)進(jìn)行組合。

利用這些組合數(shù)據(jù),可以對(duì)模型進(jìn)行重新訓(xùn)練以進(jìn)行持續(xù)改進(jìn)。一旦在云中進(jìn)行了再培訓(xùn),就可以在邊緣重新部署新模型。

與采用單一方法相比,將云AI和邊緣部署的優(yōu)勢(shì)整合在一起更強(qiáng)大。具體來說,云AI的處理能力和高性能可以補(bǔ)充邊緣AI的效率,速度和自主性。

混合方法在行動(dòng)

人工智能在自動(dòng)駕駛汽車中的應(yīng)用是一個(gè)說明補(bǔ)充方法好處的特定用例。

在此用例中,至關(guān)重要的是,AI模型必須在邊緣,直接在設(shè)備和車輛上運(yùn)行,以確保汽車可以安全行駛。如果汽車在將數(shù)據(jù)發(fā)送到云端并進(jìn)行處理之前無法采取行動(dòng),那么它將無法做出反應(yīng)并迅速做出決策以確保安全。另外,無法保證車輛將保持連續(xù)的互聯(lián)網(wǎng)連接。

但是,汽車制造商還可以從捕獲數(shù)據(jù)中受益,而不僅僅是實(shí)時(shí)決策所必需的。將收集的數(shù)據(jù)發(fā)送到云進(jìn)行處理是持續(xù)改進(jìn)和重新訓(xùn)練模型的關(guān)鍵。這不僅可以徹底處理設(shè)備的數(shù)據(jù),而且還可以將深度學(xué)習(xí)的見解與從其他邊緣設(shè)備收集的數(shù)據(jù)相結(jié)合,以進(jìn)行更大的輸入和理解。基于此見解,可以不斷改進(jìn)算法以發(fā)展自動(dòng)駕駛汽車系統(tǒng)。

下一步是什么?邊緣AI和云AI的演變

隨著越來越多的組織在云端或邊緣利用AI的力量,我們將看到更多能夠提供現(xiàn)實(shí)價(jià)值的深度學(xué)習(xí)應(yīng)用程序。

5G的興起將繼續(xù)推動(dòng)深度學(xué)習(xí)的發(fā)展。隨著5G變得越來越普遍,它將增強(qiáng)超級(jí)計(jì)算的可訪問性。具體來說,5G將使從邊緣到云的數(shù)據(jù)共享變得更加無縫和高效,從而促進(jìn)更高效的數(shù)據(jù)處理。

但是,即使使用5G,仍然需要在邊緣進(jìn)行實(shí)時(shí)決策。云仍將無法即時(shí)滿足邊緣應(yīng)用程序?qū)?shù)據(jù)處理的需求。因此,在計(jì)劃部署模型時(shí),邊緣AI必須繼續(xù)成為AI公司關(guān)注的焦點(diǎn)。對(duì)于云和邊緣部署采用互補(bǔ)方法的企業(yè),無論是在其模型的短期處理能力還是在有效存儲(chǔ),處理和改進(jìn)模型的長(zhǎng)期能力上,都將獲得最大的成功。
責(zé)任編輯:YYX

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 人工智能
    +關(guān)注

    關(guān)注

    1796

    文章

    47683

    瀏覽量

    240302
  • 云端
    +關(guān)注

    關(guān)注

    0

    文章

    120

    瀏覽量

    16932
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5516

    瀏覽量

    121553
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    邊緣設(shè)備設(shè)計(jì)和部署深度神經(jīng)網(wǎng)絡(luò)的實(shí)用框架

    ???? 機(jī)器學(xué)習(xí)深度學(xué)習(xí)應(yīng)用程序正越來越多地從云端轉(zhuǎn)移到靠近數(shù)據(jù)源頭的嵌入式設(shè)備。隨著邊緣計(jì)
    的頭像 發(fā)表于 12-20 11:28 ?282次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測(cè)模型

    以及邊緣計(jì)算能力的增強(qiáng),越來越多的目標(biāo)檢測(cè)應(yīng)用開始直接在靠近數(shù)據(jù)源的邊緣設(shè)備運(yùn)行。這不僅減少了數(shù)據(jù)傳輸延遲,保護(hù)了用戶隱私,同時(shí)也減輕了云端
    發(fā)表于 12-19 14:33

    AI模型部署邊緣設(shè)備的奇妙之旅:如何在邊緣部署OpenCV

    視覺領(lǐng)域最有力的研究工具。深度學(xué)習(xí)中,我們會(huì)經(jīng)常接觸到個(gè)名稱,圖像處理和計(jì)算機(jī)視覺,它們之間有什么區(qū)別呢? 圖像處理 (Image Processing) 目的:圖像處理主要集中
    發(fā)表于 12-14 09:31

    AI模型部署邊緣設(shè)備的奇妙之旅:如何實(shí)現(xiàn)手寫數(shù)字識(shí)別

    新的數(shù)據(jù)樣本,另一個(gè)是判別器用來判斷這些樣本的真實(shí)性。者相互競(jìng)爭(zhēng),共同進(jìn)化,最終實(shí)現(xiàn)高質(zhì)量的數(shù)據(jù)合成。 2.4 模型優(yōu)化技術(shù) 深度學(xué)習(xí)
    發(fā)表于 12-06 17:20

    GPU深度學(xué)習(xí)中的應(yīng)用 GPUs圖形設(shè)計(jì)中的作用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心部分,已經(jīng)成為推動(dòng)技術(shù)進(jìn)步的重要力量。GPU(圖形處理單元)
    的頭像 發(fā)表于 11-19 10:55 ?727次閱讀

    NPU深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專門為
    的頭像 發(fā)表于 11-14 15:17 ?895次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的需求不斷增加,F(xiàn)PGA 邊緣設(shè)備的應(yīng)用也將迎來更多機(jī)遇。 ? 工具和開發(fā)環(huán)境的完善:目前,F(xiàn)PGA 的開發(fā)工具和環(huán)境相對(duì)較為復(fù)雜,對(duì)開發(fā)者的
    發(fā)表于 09-27 20:53

    wdm設(shè)備兩種傳輸方式

    系統(tǒng)中,有多種傳輸方式,其中最常見的兩種是密集波分復(fù)用(DWDM)和粗波分復(fù)用(CWDM)。 1. 密集波分復(fù)用(DWDM) 1.1 DWDM技術(shù)原理 密集波分復(fù)用(Dense Wavelength Division Multiplexing,簡(jiǎn)稱DWDM)是一
    的頭像 發(fā)表于 07-18 09:45 ?548次閱讀

    深度學(xué)習(xí)模型量化方法

    深度學(xué)習(xí)模型量化是一重要的模型輕量化技術(shù),旨在通過減少網(wǎng)絡(luò)參數(shù)的比特寬度來減小模型大小和加速推理過程,同時(shí)盡量保持模型性能。從而達(dá)到把模型部署
    的頭像 發(fā)表于 07-15 11:01 ?562次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>模型量化方法

    深度學(xué)習(xí)算法嵌入式平臺(tái)上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法各個(gè)領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法
    的頭像 發(fā)表于 07-15 10:03 ?1698次閱讀

    深度學(xué)習(xí)算法集成電路測(cè)試中的應(yīng)用

    隨著半導(dǎo)體技術(shù)的快速發(fā)展,集成電路(IC)的復(fù)雜性和集成度不斷提高,對(duì)測(cè)試技術(shù)的要求也日益增加。深度學(xué)習(xí)算法作為一強(qiáng)大的數(shù)據(jù)處理和模式識(shí)別
    的頭像 發(fā)表于 07-15 09:48 ?1175次閱讀

    深度學(xué)習(xí)自動(dòng)駕駛中的關(guān)鍵技術(shù)

    隨著人工智能技術(shù)的飛速發(fā)展,自動(dòng)駕駛技術(shù)作為其中的重要分支,正逐漸走向成熟。自動(dòng)駕駛系統(tǒng)中,深度學(xué)習(xí)
    的頭像 發(fā)表于 07-01 11:40 ?866次閱讀

    部署邊緣設(shè)備的輕量級(jí)模型

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)邊緣AI算法是一將人工智能(AI)算法和計(jì)算能力放置接近數(shù)據(jù)源的終端設(shè)備中的策略。這種算法通常被部署
    的頭像 發(fā)表于 05-11 00:17 ?2692次閱讀

    物聯(lián)邊緣網(wǎng)關(guān)如何部署管理?成本效益怎樣?

    的網(wǎng)絡(luò)環(huán)境,邊緣網(wǎng)關(guān)還集成了多種通信接口和協(xié)議,確保數(shù)據(jù)的穩(wěn)定傳輸和高效交換。 軟件層面,物聯(lián)邊緣網(wǎng)關(guān)集成了先進(jìn)的算法和模型,實(shí)現(xiàn)了從數(shù)據(jù)采集、預(yù)處理到分析挖掘的全流程智能化。通過機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 04-15 15:49 ?561次閱讀
    物聯(lián)<b class='flag-5'>邊緣</b>網(wǎng)關(guān)如何<b class='flag-5'>部署</b>管理?成本效益怎樣?

    FPGA深度學(xué)習(xí)應(yīng)用中或?qū)⑷〈鶪PU

    上漲,因?yàn)槭聦?shí)表明,它們的 GPU 訓(xùn)練和運(yùn)行 深度學(xué)習(xí)模型 方面效果明顯。實(shí)際,英偉達(dá)也已經(jīng)對(duì)自己的業(yè)務(wù)進(jìn)行了轉(zhuǎn)型,之前它是一家純粹做 GPU 和游戲的公司,現(xiàn)在除了作為一家云
    發(fā)表于 03-21 15:19
    天博百家乐官网娱乐城| 利都百家乐官网国际娱乐场开户注册 | 澳门在线赌场| 大发888官网官方下载| 百家乐网上最好网站| 百家乐官网真人游戏娱乐场| 锡林郭勒盟| 现金网信誉排行| 百家乐哪里可以玩| 迷你百家乐论坛| 闲和庄百家乐官网娱乐平台| 必博百家乐官网游戏| 百家乐真钱游戏| 百家乐牌路分析仪| 网上百家乐官网游戏玩法| 百家乐官网贴| 广东省| 德州扑克比赛规则| 大连百家乐商场| 百家乐二十一点游戏| 刀把状的房子做生意| 罗浮宫百家乐官网的玩法技巧和规则 | 威尼斯人娱乐城易博lm0| 百家乐霸王闲| 百家乐如何投注法| 巴黎人百家乐官网的玩法技巧和规则| 至尊百家乐官网qvod| 百家乐官网假在哪里| 龙虎斗 | 零点棋牌下载| 中山水果机定位器| 太阳百家乐网| 金矿百家乐的玩法技巧和规则 | 免费百家乐追号工具| 百家乐赌博技巧大全| 优博百家乐现金网平台| 百家乐官网社区| 百家乐官网tt赌场娱乐网规则| 赌博百家乐官网下载| 真人百家乐官网软件博彩吧| e世博百家乐官网技巧|