那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

晶體管:后FinFET時代的技術(shù)演進

旺材芯片 ? 來源:旺材芯片 ? 作者:旺材芯片 ? 2020-12-30 17:45 ? 次閱讀

FinFET晶體管架構(gòu)是當今半導(dǎo)體行業(yè)的主力軍。但是,隨著器件的持續(xù)微縮,短溝道效應(yīng)迫使業(yè)界引入新的晶體管架構(gòu)。在本文中,IMEC的3D混合微縮項目總監(jiān)Julien Ryckaert勾勒出了向2nm及以下技術(shù)節(jié)點發(fā)展的演進之路。在這條令人振奮的道路上,他介紹了Nanosheet晶體管,F(xiàn)orksheet器件和CFET。其中一部分內(nèi)容已在2019 IEEE國際電子器件會議(IEDM)上發(fā)表。

FinFET:今天最先進的晶體管 在每一代新技術(shù)上,芯片制造商都能夠?qū)⒕w管規(guī)格微縮0.7倍,從而實現(xiàn)15%的性能提升,50%的面積減小,40%的功耗降低以及35%的成本降低。幾年前,業(yè)界為了維持這種微縮路徑,從“老式”平面MOSFET過渡到FinFET晶體管架構(gòu)。在FinFET中,源極和漏極之間的溝道為fin的形式。柵極環(huán)繞該3D溝道,可從溝道的3個側(cè)面進行控制。這種多柵極結(jié)構(gòu)可以抑制在柵極長度降低時帶來的短溝道效應(yīng)。

出色的短溝道控制能力至關(guān)重要,因為它奠定了器件微縮的基礎(chǔ),允許更短的溝道長度和更低的工作電壓。 2012年,首款商用22nm FinFET面世。從那時起,F(xiàn)inFET體系結(jié)構(gòu)進行了持續(xù)的改進,以提高性能并減小面積。例如,F(xiàn)inFET的3D特性允許增加fin片高度,從而在相同的面積上獲得更高的器件驅(qū)動電流。如今,業(yè)界正在加快生產(chǎn)的10nm / 7nm芯片也是基于FinFET。在最先進的節(jié)點的標準單元大多是6T單元高度,也就是是每個器件最多擁有2根fin。

Nanosheet:器件進化第一步 但是,隨著工藝微縮至5nm節(jié)點,F(xiàn)inFET架構(gòu)可能不再是主流。在溝道長度小到一定值時,F(xiàn)inFET結(jié)構(gòu)又無法提供足夠的靜電控制。最重要的是,向低軌標準單元的演進需要向單fin器件過渡,即使fin高度進一步增加,單fin器件也無法提供足夠的驅(qū)動電流。

隨著技術(shù)節(jié)點的不斷變化,半導(dǎo)體行業(yè)并不急于轉(zhuǎn)向其他晶體管架構(gòu)。一些公司甚至可能決定在某些節(jié)點停留更長的時間。但是,仍然存在需要最新的“通用” CMOS解決方案的應(yīng)用,例如機器學(xué)習(xí),大數(shù)據(jù)分析和數(shù)據(jù)中心服務(wù)器。通過這種通用CMOS解決方案,可以在相同技術(shù)節(jié)點中使用相同的晶體管架構(gòu)來實現(xiàn)芯片上所有的功能。 在這里,Nanosheet可以來幫助解圍。

Nanosheet可以被視為FinFET器件的自然演變版本。想象一下將FinFET的溝道水平切割成多個單獨Nanosheet溝道,柵極也會完全環(huán)繞溝道。與FinFET相比,Nanosheet的這種GAA特性提供了出色的溝道控制能力。同時,溝道在三維中的極佳分布使得單位面積的有效驅(qū)動電流得以優(yōu)化。

從FinFET到Nanosheet的自然演變。

需要微縮助推器 在6T和5T的低單元高度下,向Nanosheet器件的遷移變得最佳,因為在這種情況下,fin的減少會降低傳統(tǒng)基于FinFET的單元中的驅(qū)動電流。 但是,如果不引入結(jié)構(gòu)化微縮助推器(如埋入式電源軌和環(huán)繞式接觸),就無法將單元高度從6T減小到5T。

電源軌為芯片的不同組件提供電源,并且一般由BEOL中Mint和M1層提供。但是,它們在那里占據(jù)了很大的空間。在嵌入式電源軌結(jié)構(gòu)中,電源軌埋在芯片的前段,以幫助釋放互連的布線資源。此外,它們?yōu)椴捎霉?jié)距微縮而增加BEOL電阻的技術(shù)提供了較低的電阻局部電流分布。BEOL沒有電源軌后,可以將標準單元的高度從6T進一步降低到5T。

下一步:縮小p和n之間的間距 隨著走向更小的軌道高度的旅程的繼續(xù),單元高度的進一步減小將要求標準單元內(nèi)nFET和pFET器件之間的間距更小。但是,對于FinFET和Nanosheet而言,工藝限制了這些n和p器件之間的間距。例如,在FinFET架構(gòu)中,通常在n和p之間需要2個dummy fin的間距,這最多消耗總可用空間的40-50%。

為了擴大這些器件的可微縮性,IMEC最近提出了一種創(chuàng)新的架構(gòu),稱為Forksheet器件。Forksheet可以被認為是Nanosheet的自然延伸。 與Nanosheet相比,現(xiàn)在溝道由叉形柵極結(jié)構(gòu)控制,這是通過在柵極圖案化之前在p和nMOS器件之間引入“介電墻”來實現(xiàn)的。該墻將p柵溝槽與n柵溝槽物理隔離,從而允許更緊密的n到p間距。

從FinFET到Nanosheet再到Forksheet的自然演變。 用于制造Forksheet的工藝流程與用于制造Nanosheet的工藝流程相似,僅增加一些額外的工藝步驟。n和p之間的介電隔離還具有一些工藝優(yōu)勢,例如填充功函數(shù)金屬的工藝更簡化。在此基礎(chǔ)上,由于大幅減少了n到p的間距,預(yù)計該Forksheet具有更佳的面積和性能的可微縮性。

Forksheet工藝流程中的關(guān)鍵步驟,即有源區(qū)形成后“介電墻”的形成步驟。

Forksheet:性能和面積的改進 IMEC的研究人員最近使用TCAD仿真來量化Forksheet架構(gòu)的預(yù)期PPA潛力。所研究的器件針對IMEC的2nm技術(shù)節(jié)點,采用42nm的接觸柵節(jié)距和16nm的金屬間距的5T標準單元庫。擬議的設(shè)計包括一些微縮助推器,例如埋入式電源軌和環(huán)繞接觸。 與Nanosheet器件相比,已計算出10%的速度增益(恒定功率)和24%的功率減小(恒定速度)。

這種性能提升的部分原因是由于柵極-漏極重疊較小而導(dǎo)致的(寄生)Miller電容減小。可用空間還可以用于增加sheet寬度,從而提高驅(qū)動電流。最后,可以利用從n到p的間距減小將軌道高度從5T縮小到4.3T,從而使單元面積減小20%。在SRAM設(shè)計中,仿真結(jié)果表明,在8nm 的pn間距下,單元面積的微縮比例和性能提高了30%。

SRAM半單元的版圖,用于a)FinFET,b)GAA Nanosheet和c)Forksheet。由于pn間距不受柵極擴展(GE),柵極切割(GC)或dummy fin gate tuck(DFGT)的影響,因此Forksheet可以提供高達30%的位單元高度微縮比例。 在從平面到FinFET以及垂直堆疊的Nanosheet的自然進化中,可以將Forksheet視為下一版本。以上特性證明了其作為2nm技術(shù)節(jié)點的最終邏輯“通用” CMOS器件的潛力。在進一步的研究中,需要解決將這些器件完全投入生產(chǎn)的工藝挑戰(zhàn)。

CFET:通往3T邏輯標準單元的道路 小于5T時,單元高度的進一步降低主要受到可布線性問題的限制,而且這個問題應(yīng)在邏輯區(qū)塊級別進行評估。為了優(yōu)化可布線性,我們將進入CFET時代,進一步推動了摩爾定律的發(fā)展。 CFET的概念在于將nFET“折疊”在pFET之上,這樣就充分利用了器件3D微縮的潛力。 由于具有堆疊特性,CFET擁有2個局部互連層,這為內(nèi)部單元布線和減小單元面積提供了更大的自由度。單元之間的可布線性也可以大大改善。

CFET架構(gòu)具有2個局部互連層以及pn 堆疊CMOS基本結(jié)構(gòu)。 初步評估表明,基于FinFET的4T CFET可以對標甚至超過5T“標準” FinFET器件的標準單元功率性能指標。它還可以提供面積縮小25%的標準單元和SRAM單元。基于Nanosheet的CFET可以提供額外的性能提升,并且對于縮小到3T邏輯標準單元來說是必需的。

結(jié)論 在本文中,IMEC提出了一條通往2nm及以下技術(shù)節(jié)點的最終規(guī)模化邏輯器件的演進路徑。在今天的主流FinFET之后出現(xiàn)了Nanosheet器件,該器件提供了出色的溝道控制功能,同時又增加了有限的工藝復(fù)雜性。當配合定標助推器時,具有5T軌道高度的標準單元將觸手可及。下一步,F(xiàn)orksheet可能會進場,由于減小了n到p的間距,因此提供了通往4.3T單元的可能性。相關(guān)工藝仿真證實了其在2nm技術(shù)節(jié)點上的潛力。CFET作為最緊湊的CMOS結(jié)構(gòu),為實現(xiàn)3T邏輯標準單元帶來了希望。

責(zé)任編輯:xj

原文標題:技術(shù) | 后FinFET時代的技術(shù)演進

文章出處:【微信公眾號:旺材芯片】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 半導(dǎo)體
    +關(guān)注

    關(guān)注

    334

    文章

    27703

    瀏覽量

    222628
  • 晶體管
    +關(guān)注

    關(guān)注

    77

    文章

    9745

    瀏覽量

    138896
  • FinFET
    +關(guān)注

    關(guān)注

    12

    文章

    251

    瀏覽量

    90354

原文標題:技術(shù) | 后FinFET時代的技術(shù)演進

文章出處:【微信號:wc_ysj,微信公眾號:旺材芯片】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    互補場效應(yīng)晶體管的結(jié)構(gòu)和作用

    隨著半導(dǎo)體技術(shù)不斷逼近物理極限,傳統(tǒng)的平面晶體管(Planar FET)、鰭式場效應(yīng)晶體管FinFET)從平面晶體管
    的頭像 發(fā)表于 01-24 10:03 ?2004次閱讀
    互補場效應(yīng)<b class='flag-5'>晶體管</b>的結(jié)構(gòu)和作用

    FinFET制造工藝的具體步驟

    本文介紹了FinFET(鰭式場效應(yīng)晶體管)制造過程中柵極高介電常數(shù)金屬柵極工藝的具體步驟。
    的頭像 發(fā)表于 01-20 11:02 ?939次閱讀
    <b class='flag-5'>FinFET</b>制造工藝的具體步驟

    晶體管故障診斷與維修技巧 晶體管在數(shù)字電路中的作用

    晶體管是現(xiàn)代電子設(shè)備中不可或缺的組件,它們在數(shù)字電路中扮演著至關(guān)重要的角色。了解如何診斷和維修晶體管故障對于電子工程師和技術(shù)人員來說是一項基本技能。 一、晶體管在數(shù)字電路中的作用 開關(guān)
    的頭像 發(fā)表于 12-03 09:46 ?712次閱讀

    晶體管與場效應(yīng)的區(qū)別 晶體管的封裝類型及其特點

    晶體管與場效應(yīng)的區(qū)別 工作原理 : 晶體管晶體管(BJT)基于雙極型晶體管的原理,即通過控制基極電流來控制集電極和發(fā)射極之間的電流。
    的頭像 發(fā)表于 12-03 09:42 ?389次閱讀

    晶體管的輸出特性是什么

    晶體管的輸出特性是描述晶體管在輸出端對外部負載的特性表現(xiàn),這些特性直接關(guān)系到晶體管在各種電路中的應(yīng)用效果和性能。晶體管的輸出特性受到多種因素的影響,包括輸入信號、電源電壓、溫度以及
    的頭像 發(fā)表于 09-24 17:59 ?813次閱讀

    NMOS晶體管和PMOS晶體管的區(qū)別

    NMOS晶體管和PMOS晶體管是兩種常見的金屬氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET)類型,它們在多個方面存在顯著的差異。以下將從結(jié)構(gòu)、工作原理、性能特點、應(yīng)用場景等方面詳細闡述NMOS晶體管
    的頭像 發(fā)表于 09-13 14:10 ?4806次閱讀

    CMOS晶體管和MOSFET晶體管的區(qū)別

    CMOS晶體管和MOSFET晶體管在電子領(lǐng)域中都扮演著重要角色,但它們在結(jié)構(gòu)、工作原理和應(yīng)用方面存在顯著的區(qū)別。以下是對兩者區(qū)別的詳細闡述。
    的頭像 發(fā)表于 09-13 14:09 ?2183次閱讀

    晶體管處于放大狀態(tài)的條件是什么

    晶體管是一種半導(dǎo)體器件,廣泛應(yīng)用于電子設(shè)備中。它具有三個主要的引腳:基極(B)、發(fā)射極(E)和集電極(C)。晶體管的工作原理是通過控制基極和發(fā)射極之間的電流,來控制集電極和發(fā)射極之間的電流。晶體管
    的頭像 發(fā)表于 07-18 18:15 ?1801次閱讀

    芯片晶體管的深度和寬度有關(guān)系嗎

    一、引言 有關(guān)系。隨著集成電路技術(shù)的飛速發(fā)展,芯片晶體管作為電子設(shè)備的核心元件,其性能的優(yōu)化和制造技術(shù)的提升成為了行業(yè)關(guān)注的焦點。在晶體管的眾多設(shè)計參數(shù)中,深度和寬度是兩個至關(guān)重要的因
    的頭像 發(fā)表于 07-18 17:23 ?823次閱讀

    什么是光電晶體管?光電晶體管的工作原理和結(jié)構(gòu)

    技術(shù)制成,具有比常規(guī)晶體管更大的集電極和基極區(qū)域。光電晶體管可以具有由一種材料(如硅)制成的同質(zhì)結(jié)結(jié)構(gòu),也可以具有由不同材料制成的異質(zhì)結(jié)結(jié)構(gòu)。
    的頭像 發(fā)表于 07-01 18:13 ?2491次閱讀
    什么是光電<b class='flag-5'>晶體管</b>?光電<b class='flag-5'>晶體管</b>的工作原理和結(jié)構(gòu)

    PNP晶體管符號和結(jié)構(gòu) 晶體管測試儀電路圖

    PNP晶體管是一種雙極性晶體管,用于電子電路中放大、開關(guān)和控制電流的器件。與NPN晶體管相對應(yīng),PNP晶體管的結(jié)構(gòu)特點在于其三個不同的半導(dǎo)體區(qū)域:正極(P型)、負極(N型)、正極(P型
    的頭像 發(fā)表于 07-01 17:45 ?3036次閱讀
    PNP<b class='flag-5'>晶體管</b>符號和結(jié)構(gòu) <b class='flag-5'>晶體管</b>測試儀電路圖

    如何提高晶體管的開關(guān)速度,讓晶體管快如閃電

    咱們今天講講電子世界的跑步選手——晶體管。這小東西在電子產(chǎn)品里就像是繼電賽跑的選手,開關(guān)的速度決定了電子設(shè)備的快慢。那么,如何才能提高晶體管的開關(guān)速度呢?來一探究竟。如果把晶體管比作一名運動員,要想
    的頭像 發(fā)表于 04-03 11:54 ?780次閱讀
    如何提高<b class='flag-5'>晶體管</b>的開關(guān)速度,讓<b class='flag-5'>晶體管</b>快如閃電

    探索晶體管背后的技術(shù)

    中、低頻大功率晶體管:中、低頻大功率晶體管一般用在電視機、音響等家電中作為電源調(diào)整、開關(guān)、場輸出、行輸出
    的頭像 發(fā)表于 03-31 16:15 ?3461次閱讀

    什么是達林頓晶體管?達林頓晶體管的基本電路

    達林頓晶體管(Darlington Transistor)也稱為達林頓對(Darlington Pair),是由兩個或更多個雙極性晶體管(或其他類似的集成電路或分立元件)組成的復(fù)合結(jié)構(gòu)。通過這種結(jié)構(gòu),第一個雙極性晶體管放大的電流
    的頭像 發(fā)表于 02-27 15:50 ?5984次閱讀
    什么是達林頓<b class='flag-5'>晶體管</b>?達林頓<b class='flag-5'>晶體管</b>的基本電路

    Si晶體管的類別介紹

    硅(Si)晶體管是現(xiàn)代電子學(xué)的基本構(gòu)建模塊,它們在計算機、通信系統(tǒng)、消費電子產(chǎn)品以及電力管理中扮演著至關(guān)重要的角色。硅作為半導(dǎo)體材料的優(yōu)勢在于其豐富的資源、成熟的加工技術(shù)以及相對低廉的成本。根據(jù)
    的頭像 發(fā)表于 02-23 14:13 ?777次閱讀
    Si<b class='flag-5'>晶體管</b>的類別介紹
    百家乐群sun811.com| 欧洲百家乐的玩法技巧和规则| 大桥下做生意风水好吗| 百家乐官网有人玩吗| 广州百家乐官网赌场| 百家乐官网游戏免费| 什么棋牌游戏能赚钱| 大发888娱乐场图标| 韩国百家乐的玩法技巧和规则| 玩百家乐678娱乐城| 百家乐玩家技巧分享| 百家乐赢钱lv| 百家乐官网平注法到656| 百家乐官网直杀| 澳门百家乐官网怎么才能赢钱| 大玩家百家乐官网现金网| 百家乐官网庄闲必赢| 和政县| 线上娱乐城| 大富豪百家乐| 皇冠足球投注平台| 百家乐网| 波音开户| 赌博博彩论坛| 金秀| 杨浦区| 百家乐官网规则技法| 百家乐官网赢的方法| 平谷区| 大发888游戏加速器| 棋牌娱乐城注册送58| 新利| 视频百家乐| 平果县| 求购百家乐官网程序| 百家乐官网电脑上怎么赌| 博彩网百家乐官网中和局| 百家乐官网学院| 百家乐官网庄闲的几率| 百家乐官网出庄的概率| 机械手百家乐官网的玩法技巧和规则 |