那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

MOSFET的關鍵指標

fcsde-sh ? 來源:張飛實戰電子 ? 作者:張飛實戰電子 ? 2021-03-11 09:50 ? 次閱讀

一位工程師曾經對我講,他從來不看MOSFET數據表的第一頁,因為“實用”的信息只在第二頁以后才出現。事實上,MOSFET數據表上的每一頁都包含有對設計者非常有價值的信息。但人們不是總能搞得清楚該如何解讀制造商提供的數據。

本文概括了一些MOSFET的關鍵指標,這些指標在數據表上是如何表述的,以及你理解這些指標所要用到的清晰圖片。像大多數電子器件一樣,MOSFET也受到工作溫度的影響。所以很重要的一點是了解測試條件,所提到的指標是在這些條件下應用的。還有很關鍵的一點是弄明白你在“產品簡介”里看到的這些指標是“最大”或是“典型”值,因為有些數據表并沒有說清楚。

電壓等級

確定MOSFET的首要特性是其漏源電壓VDS,或“漏源擊穿電壓”,這是在柵極短路到源極,漏極電流在250μA情況下,MOSFET所能承受的保證不損壞的最高電壓。VDS也被稱為“25℃下的絕對最高電壓”,但是一定要記住,這個絕對電壓與溫度有關,而且數據表里通常有一個“VDS溫度系數”。你還要明白,最高VDS是直流電壓加上可能在電路里存在的任何電壓尖峰和紋波。例如,如果你在電壓30V并帶有100mV、5ns尖峰的電源里使用30V器件,電壓就會超過器件的絕對最高限值,器件可能會進入雪崩模式。在這種情況下,MOSFET的可靠性沒法得到保證。

在高溫下,溫度系數會顯著改變擊穿電壓。例如,一些600V電壓等級的N溝道MOSFET的溫度系數是正的,在接近最高結溫時,溫度系數會讓這些MOSFET變得象650V MOSFET。很多MOSFET用戶的設計規則要求10%~20%的降額因子。在一些設計里,考慮到實際的擊穿電壓比25℃下的額定數值要高5%~10%,會在實際設計中增加相應的有用設計裕量,對設計是很有利的。

對正確選擇MOSFET同樣重要的是理解在導通過程中柵源電壓VGS的作用。這個電壓是在給定的最大RDS(on)條件下,能夠確保MOSFET完全導通的電壓。這就是為什么導通電阻總是與VGS水平關聯在一起的原因,而且也是只有在這個電壓下才能保證器件導通。一個重要的設計結果是,你不能用比用于達到RDS(on)額定值的最低VGS還要低的電壓,來使MOSFET完全導通。例如,用3.3V微控制器驅動MOSFET完全導通,你需要用在VGS= 2.5V或更低條件下能夠導通的MOSFET。

導通電阻,柵極電荷,以及“優值系數”

MOSFET的導通電阻總是在一個或多個柵源電壓條件下確定的。最大RDS(on)限值可以比典型數值高20%~50%。RDS(on)最大限值通常指的25℃結溫下的數值,而在更高的溫度下,RDS(on)可以增加30%~150%,如圖1所示。由于RDS(on)隨溫度而變,而且不能保證最小的電阻值,根據RDS(on)來檢測電流不是很準確的方法。

圖1RDS(on)在最高工作溫度的30%~150%這個范圍內隨溫度增加而增加

導通電阻對N溝道和P溝道MOSFET都是十分重要的。在開關電源中,Qg是用在開關電源里的N溝道MOSFET的關鍵選擇標準,因為Qg會影響開關損耗。這些損耗有兩個方面影響:一個是影響MOSFET導通和關閉的轉換時間;另一個是每次開關過程中對柵極電容充電所需的能量。要牢記的一點是,Qg取決于柵源電壓,即使用更低的Vgs可以減少開關損耗。

作為一種快速比較準備用在開關應用里MOSFET的方式,設計者經常使用一個單數公式,公式包括表示傳導損耗RDS(on)及表示開關損耗的Qg:RDS(on) xQg。這個“優值系數”(FOM)總結了器件的性能,可以用典型值或最大值來比較MOSFET。要保證在器件中進行準確的比較,你需要確定用于RDS(on)和Qg的是相同的VGS,在公示里典型值和最大值沒有碰巧混在一起。較低的FOM能讓你在開關應用里獲得更好的性能,但是不能保證這一點。只有在實際的電路里才能獲得最好的比較結果,在某些情況下可能需要針對每個MOSFET對電路進行微調。

額定電流和功率耗散

基于不同的測試條件,大多數MOSFET在數據表里都有一個或多個的連續漏極電流。你要仔細看看數據表,搞清楚這個額定值是在指定的外殼溫度下(比如TC = 25℃),或是環境溫度(比如TA = 25℃)。這些數值當中哪些是最相關將取決于器件的特性和應用(見圖2)。

圖2 全部絕對最大電流和功率數值都是真實的數據

對于用在手持設備里的小型表面貼裝器件,關聯度最高的電流等級可能是在70℃環境溫度下的電流,對于有散熱片和強制風冷的大型設備,在TA = 25℃下的電流等級可能更接近實際情況。對于某些器件來說,管芯在其最高結溫下能夠處理的電流要高于封裝所限定的電流水平,在一些數據表,這種“管芯限定”的電流等級是對“封裝限定”電流等級的額外補充信息,可以讓你了解管芯的魯棒性。

對于連續的功率耗散也要考慮類似的情況,功耗耗散不僅取決于溫度,而且取決于導通時間。設想一個器件在TA= 70℃情況下,以PD=4W連續工作10秒鐘。構成“連續”時間周期的因素會根據MOSFET封裝而變化,所以你要使用數據表里的標準化熱瞬態阻抗圖,看經過10秒、100秒或10分鐘后的功率耗散是什么樣的。如圖3所示,這個專用器件經過10秒脈沖后的熱阻系數大約是0.33,這意味著經過大約10分鐘后,一旦封裝達到熱飽和,器件的散熱能力只有1.33W而不是4W,盡管在良好冷卻的情況下器件的散熱能力可以達到2W左右。


圖3 MOSFET在施加功率脈沖情況下的熱阻

實際上,我們可以把MOSFET選型分成四個步驟。

第一步:選用N溝道還是P溝道

為設計選擇正確器件的第一步是決定采用N溝道還是P溝道MOSFET。在典型的功率應用中,當一個MOSFET接地,而負載連接到干線電壓上時,該MOSFET就構成了低壓側開關。在低壓側開關中,應采用N溝道MOSFET,這是出于對關閉或導通器件所需電壓的考慮。當MOSFET連接到總線及負載接地時,就要用高壓側開關。通常會在這個拓撲中采用P溝道MOSFET,這也是出于對電壓驅動的考慮。

要選擇適合應用的器件,必須確定驅動器件所需的電壓,以及在設計中最簡易執行的方法。下一步是確定所需的額定電壓,或者器件所能承受的最大電壓。額定電壓越大,器件的成本就越高。根據實踐經驗,額定電壓應當大于干線電壓或總線電壓。這樣才能提供足夠的保護,使MOSFET不會失效。就選擇MOSFET而言,必須確定漏極至源極間可能承受的最大電壓,即最大VDS。知道MOSFET能承受的最大電壓會隨溫度而變化這點十分重要。設計人員必須在整個工作溫度范圍內測試電壓的變化范圍。額定電壓必須有足夠的余量覆蓋這個變化范圍,確保電路不會失效。設計工程師需要考慮的其他安全因素包括由開關電子設備(如電機或變壓器)誘發的電壓瞬變。不同應用的額定電壓也有所不同;通常,便攜式設備為20V、FPGA電源為20~30V、85~220VAC應用為450~600V。

第二步:確定額定電流

第二步是選擇MOSFET的額定電流。視電路結構而定,該額定電流應是負載在所有情況下能夠承受的最大電流。與電壓的情況相似,設計人員必須確保所選的MOSFET能承受這個額定電流,即使在系統產生尖峰電流時。兩個考慮的電流情況是連續模式和脈沖尖峰。在連續導通模式下,MOSFET處于穩態,此時電流連續通過器件。脈沖尖峰是指有大量電涌(或尖峰電流)流過器件。一旦確定了這些條件下的最大電流,只需直接選擇能承受這個最大電流的器件便可。

選好額定電流后,還必須計算導通損耗。在實際情況下,MOSFET并不是理想的器件,因為在導電過程中會有電能損耗,這稱之為導通損耗。MOSFET在“導通”時就像一個可變電阻,由器件的RDS(ON)所確定,并隨溫度而顯著變化。器件的功率耗損可由Iload2×RDS(ON)計算,由于導通電阻隨溫度變化,因此功率耗損也會隨之按比例變化。對MOSFET施加的電壓VGS越高,RDS(ON)就會越小;反之RDS(ON)就會越高。對系統設計人員來說,這就是取決于系統電壓而需要折中權衡的地方。對便攜式設計來說,采用較低的電壓比較容易(較為普遍),而對于工業設計,可采用較高的電壓。注意RDS(ON)電阻會隨著電流輕微上升。關于RDS(ON)電阻的各種電氣參數變化可在制造商提供的技術資料表中查到。

技術對器件的特性有著重大影響,因為有些技術在提高最大VDS時往往會使RDS(ON)增大。對于這樣的技術,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,從而增加與之配套的封裝尺寸及相關的開發成本。業界現有好幾種試圖控制晶片尺寸增加的技術,其中最主要的是溝道和電荷平衡技術。

在溝道技術中,晶片中嵌入了一個深溝,通常是為低電壓預留的,用于降低導通電阻RDS(ON)。為了減少最大VDS對RDS(ON)的影響,開發過程中采用了外延生長柱/蝕刻柱工藝。例如,飛兆半導體開發了稱為SuperFET的技術,針對RDS(ON)的降低而增加了額外的制造步驟。

這種對RDS(ON)的關注十分重要,因為當標準MOSFET的擊穿電壓升高時,RDS(ON)會隨之呈指數級增加,并且導致晶片尺寸增大。SuperFET工藝將RDS(ON)與晶片尺寸間的指數關系變成了線性關系。這樣,SuperFET器件便可在小晶片尺寸,甚至在擊穿電壓達到600V的情況下,實現理想的低RDS(ON)。結果是晶片尺寸可減小達35%。而對于最終用戶來說,這意味著封裝尺寸的大幅減小。

第三步:確定熱要求

選擇MOSFET的下一步是計算系統的散熱要求。設計人員必須考慮兩種不同的情況,即最壞情況和真實情況。建議采用針對最壞情況的計算結果,因為這個結果提供更大的安全余量,能確保系統不會失效。在MOSFET的資料表上還有一些需要注意的測量數據;比如封裝器件的半導體結與環境之間的熱阻,以及最大的結溫。

器件的結溫等于最大環境溫度加上熱阻與功率耗散的乘積(結溫=最大環境溫度+[熱阻×功率耗散])。根據這個方程可解出系統的最大功率耗散,即按定義相等于I2×RDS(ON)。由于設計人員已確定將要通過器件的最大電流,因此可以計算出不同溫度下的RDS(ON)。值得注意的是,在處理簡單熱模型時,設計人員還必須考慮半導體結/器件外殼及外殼/環境的熱容量;即要求印刷電路板和封裝不會立即升溫。

雪崩擊穿是指半導體器件上的反向電壓超過最大值,并形成強電場使器件內電流增加。該電流將耗散功率,使器件的溫度升高,而且有可能損壞器件。半導體公司都會對器件進行雪崩測試,計算其雪崩電壓,或對器件的穩健性進行測試。計算額定雪崩電壓有兩種方法;一是統計法,另一是熱計算。而熱計算因為較為實用而得到廣泛采用。不少公司都有提供其器件測試的詳情,如飛兆半導體提供了“Power MOSFET Avalanche Guidelines”( Power MOSFET Avalanche Guidelines--可以到Fairchild網站去下載)。除計算外,技術對雪崩效應也有很大影響。例如,晶片尺寸的增加會提高抗雪崩能力,最終提高器件的穩健性。對最終用戶而言,這意味著要在系統中采用更大的封裝件。

第四步:決定開關性能

選擇MOSFET的最后一步是決定MOSFET的開關性能。影響開關性能的參數有很多,但最重要的是柵極/漏極、柵極/ 源極及漏極/源極電容。這些電容會在器件中產生開關損耗,因為在每次開關時都要對它們充電。MOSFET的開關速度因此被降低,器件效率也下降。為計算開關過程中器件的總損耗,設計人員必須計算開通過程中的損耗(Eon)和關閉過程中的損耗(Eoff)。MOSFET開關的總功率可用如下方程表達:Psw=(Eon+Eoff)×開關頻率。而柵極電荷(Qgd)對開關性能的影響最大。

基于開關性能的重要性,新的技術正在不斷開發以解決這個開關問題。芯片尺寸的增加會加大柵極電荷;而這會使器件尺寸增大。為了減少開關損耗,新的技術如溝道厚底氧化已經應運而生,旨在減少柵極電荷。舉例說,SuperFET這種新技術就可通過降低RDS(ON)和柵極電荷(Qg),最大限度地減少傳導損耗和提高開關性能。這樣,MOSFET就能應對開關過程中的高速電壓瞬變(dv/dt)和電流瞬變(di/dt),甚至可在更高的開關頻率下可靠地工作。

責任編輯:lq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • MOSFET
    +關注

    關注

    147

    文章

    7242

    瀏覽量

    214275
  • 導通電阻
    +關注

    關注

    0

    文章

    350

    瀏覽量

    19865
  • p溝道
    +關注

    關注

    0

    文章

    61

    瀏覽量

    13522

原文標題:有了這些經驗,菜鳥也能輕松選擇MOSFET!

文章出處:【微信號:fcsde-sh,微信公眾號:fcsde-sh】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    SAR ADC的工作過程和關鍵指標

    ADC以其低功耗、高精度、小尺寸以及適中的速度和分辨率,在中等至高分辨率應用中占據主導地位。本文將詳細介紹SAR ADC的概念、工作過程、關鍵指標以及其在不同領域的應用。
    的頭像 發表于 02-02 13:57 ?94次閱讀

    鴻道Intewell工業操作系統,三大關鍵技術,領跑行業前沿

    鴻道工業操作系統,是軟件定義控制的工業實時操作系統,具備三大關鍵技術:1、確定性計算與高實時響應(微秒級、關鍵指標)提供確定性的計算與高實時的系統環境,保障工業生產運作的靈活高效。2、微內核、并發處理(微內核的強大之處)
    的頭像 發表于 12-25 14:46 ?205次閱讀

    數字化車間——有哪些關鍵指標

    數字化車間是智能制造的核心引擎,通過數字化技術和信息化手段,實現生產數據的實時采集、傳輸、分析和應用,提高生產效率和管理水平,增強競爭力。影響其性能的關鍵指標包括設備綜合效率(OEE)、時間開動率、性能開動率、合格品率等。
    的頭像 發表于 12-23 11:01 ?254次閱讀
    數字化車間——有哪些<b class='flag-5'>關鍵指標</b>?

    低噪聲運算放大器的關鍵指標特點、優勢和應用場景

    低噪聲運算放大器的關鍵指標特點、優勢和應用場景。 1 低噪聲 應用場景1: 在大部分高精度放大的應用中,都需要外部增加一款運放進行電流采樣放大,而在電路應用系統中一般輸入信號幅值比較小,這樣就要求運放自身的噪聲要遠
    的頭像 發表于 12-23 10:13 ?555次閱讀
    低噪聲運算放大器的<b class='flag-5'>關鍵指標</b>特點、優勢和應用場景

    存儲芯片的TBW和MTBF:關鍵指標解析與提升策略

    指標。這兩個指標直接關聯到存儲芯片的使用壽命、耐用性以及用戶的數據安全。 一、TBW與MTBF的定義及重要性 1.TBW: TBW即寫入總字節數,是衡量存儲芯片壽命的關鍵參數。它代表了存儲芯片在其生命周期內可以承受的總寫入數據量
    的頭像 發表于 11-13 10:35 ?539次閱讀
    存儲芯片的TBW和MTBF:<b class='flag-5'>關鍵指標</b>解析與提升策略

    理解云服務器網絡指標關鍵性能指標

    指標、它們的重要性以及它們如何有助于實現最佳性能。 關鍵云服務器網絡指標: 網絡吞吐量: 網絡吞吐量衡量在特定時間范圍內通過網絡成功傳輸的數據量。它是理解云服務器和客戶端之間數據傳輸效率的關鍵
    的頭像 發表于 11-11 17:04 ?409次閱讀

    如何準確計算電源引起的運放輸出失調電壓?1200字搞定運放電路選型之電源抑制比PSRR

    電源抑制比的代號是PSRR,這個詞不是運算放大器的專屬,如果你研究過LDO,或DCDC芯片,你會發現,PSRR也是LDO以及DCDC的關鍵指標參數。通俗點來說,PSRR是表征電路對電源電壓波動抑制
    的頭像 發表于 11-07 09:07 ?1997次閱讀
    如何準確計算電源引起的運放輸出失調電壓?1200字搞定運放電路選型之電源抑制比PSRR

    在選擇SD-WAN提供商時,需要關注哪些關鍵指標

    在選擇SD-WAN提供商時,應該關注以下關鍵指標: 1、帶寬利用率:SD-WAN應能有效利用可用帶寬,確保數據傳輸的高效與穩定。 2、路徑選擇與負載均衡:SD-WAN需要能夠智能選擇最佳路徑并實現
    的頭像 發表于 09-30 12:24 ?292次閱讀

    放大線路的性能指標有哪些

    放大電路的性能指標是衡量其性能優劣的重要參數,主要包括以下幾個方面: 1. 增益 定義 :增益表示放大電路輸出信號與輸入信號之間的幅度比值,是評估放大效果的關鍵指標。增益可以是電壓增益、電流增益或
    的頭像 發表于 09-23 10:46 ?617次閱讀

    高頻電路設計中的關鍵指標

    為了確保高頻電路的高效運行和可靠性,一系列性能指標被提出并嚴格遵循。這些性能指標涵蓋了增益、通頻帶、選擇性、噪聲系數和穩定性等多個方面,下面將逐一探討這些關鍵指標及其在高頻電路設計中的重要性。 增益
    的頭像 發表于 09-20 16:31 ?727次閱讀

    您想了解的數據采集DAQ關鍵指標都在這里了

    數據采集DAQ關鍵指標有哪些
    的頭像 發表于 09-03 13:52 ?491次閱讀
    您想了解的數據采集DAQ<b class='flag-5'>關鍵指標</b>都在這里了

    電源濾波器選擇關鍵指標解析

    在電子設備日益普及的今天,電源濾波器作為保障電源質量、抑制電磁干擾的重要器件,其選擇和應用顯得尤為重要。本文維愛普電源濾波器小編將為您詳細介紹電源濾波器選擇時需要考慮的關鍵指標,幫助您更好地理解和應用電源濾波器。
    的頭像 發表于 06-18 10:46 ?518次閱讀
    電源濾波器選擇<b class='flag-5'>關鍵指標</b>解析

    晶振頻率穩定性:關鍵指標與影響因素

    晶振頻率穩定性是評價晶振質量的一個重要指標,它指的是晶振頻率隨外界條件變化的能力。在實際應用中,我們需要關注以下幾個方面對晶振頻率穩定性的影響:1. 工作溫度:晶體的物理特性會隨著溫度的變化而變化
    發表于 05-17 15:34

    鋰電池一般的比能量是多少?影響鋰電池比能量的因素

    鋰電池作為一種高效的電化學儲能設備,其比能量是衡量其性能的關鍵指標之一。
    的頭像 發表于 04-25 17:03 ?5051次閱讀

    請問怎么去測隔離芯片的關鍵指標CMTI呢?

    CMTI:Common mode transient immunity(共模瞬變抗擾度)是指對施加在隔離電路間的高速瞬變共模電壓的上升/下降容許速率dVcm/dt,通常以kV/μs或V/ns表示。
    的頭像 發表于 03-07 13:47 ?3054次閱讀
    請問怎么去測隔離芯片的<b class='flag-5'>關鍵指標</b>CMTI呢?
    百家乐游戏机出千| 百家乐官网星级游戏| 大发888娱乐英皇国际| 百家乐必胜绝| 任我赢百家乐软件| 百家乐电器维修| 百家乐平游戏| 大发888娱乐城欢迎lm0| 大发888ber| 168棋牌游戏| 宝马会在线娱乐城| 西藏| 菲律宾百家乐官网的说法| 百家乐官网筹码方| 百家乐官网打揽法| 杨公24山| 百家乐赌博博彩赌博网| 红树林百家乐的玩法技巧和规则| 飞天百家乐的玩法技巧和规则| 威尼斯人娱乐场有什么玩| 大发888存款| 美高美国际娱乐| 河津市| 真人百家乐官网视频赌博| 试玩百家乐官网的玩法技巧和规则 | 马德里百家乐官网的玩法技巧和规则 | 百家乐官网视频小游戏| 安桌百家乐官网游戏百家乐官网| 兄弟百家乐官网的玩法技巧和规则| 伟易博百家乐官网娱乐城| 百家乐官网娱乐真钱游戏| 百家乐娱乐城反水| 犹太人百家乐的玩法技巧和规则 | 百家乐娱乐城优惠| 华泰百家乐的玩法技巧和规则| 威尼斯人娱乐网可信吗| 足球网络投注| 百家乐官网投注心态| 做生意招牌什么颜色旺财| 百家乐庄闲赢负表| 亲朋棋牌下载|