近日,中國科學院深圳先進技術研究院合成生物學研究所研究員嚴飛受Advanced Drug Delivery Reviews編輯部邀請,在線發表了綜述文章。文章對聚焦超聲開放血腦屏障的機制進行了探討,重點介紹了適用于血腦屏障開放的超聲造影劑及其介導超聲開放血腦屏障技術在腦疾病中的基礎與臨床研究概況和發展前景。
腦疾病(如腦腫瘤、帕金森癥、阿爾茨海默病等)是近年來危害人們生命健康、發病率最高疾病之一。藥物治療是治療腦疾病的重要方式,但絕大多數的藥物效果不理想,這主要是由于藥物經血液循環進入腦部病變部位的濃度不足所導致的。
而妨礙藥物進入大腦病灶的罪魁禍首,便是介于血液與腦組織之間的“血腦屏障(Blood brain barrier, BBB)”,它是一種由無窗孔的毛細血管內皮細胞及細胞間緊密連接、基膜、周細胞、星形膠質細胞足突共同組成的一種正常生理性屏障結構。由于腦毛細血管內皮細胞之間幾乎沒有間隙,近管腔面緊密連接并環繞成帶,形成一個完整的屏障界面。在正常生理條件下,BBB這種復雜結構在維持中樞系統內環境的穩定發揮著重要作用,只允許高脂溶性的、低分子量(< 400Da)的營養物質通過,同時保護大腦免受病原生物、毒性分子甚至機體自身免疫系統的侵擾,保持腦的內環境穩定。然而,在病理條件下,這種BBB結構卻阻擋了絕大多數治療性藥物的進大腦入,成為腦疾病治療中難以逾越的障礙。因此,尋求一種新的無創、準確、安全、可局部開放BBB的技術或手段成了眾多顱內疾病藥理學家的研究目標。
文章指出,聚焦超聲聯合微泡開放血腦屏障是一項近年來發展起來的顱內藥物靶向遞送新技術,其原理是利用低頻聚焦超聲可穿透顱骨在大腦內形成聚焦,并誘導顱內血管中的微泡產生震蕩、膨脹、收縮以及內爆等一系列空化效應,顱內血管的BBB結構被拉伸、撐開,導致BBB的開放。相比于其他受體介導的顱內藥物遞送系統,聚焦超聲介導血腦屏障開放遞送系統具有以下幾個明顯的優勢:(1)聚焦超聲是非侵入性的,在低功率的條件下對顱骨沒有物理損傷;(2)聚焦超聲可將超聲能量聚集到顱內病灶部位,從而可以局部可逆地開啟血腦屏障;(3)聚集超聲開放血腦屏障技術可與其他影像模態(如MRI)結合實現影像引導的局部BBB開放。近年來,聚焦超聲介導血腦屏障開放技術已經進入到臨床實驗,其安全性和有效性也已經得到了臨床證據的支持。
在這篇綜述中,作者首先介紹了聚焦超聲介導血腦屏障開放的生物物理學機制。重點強調了微泡在超聲刺激下產生的穩定空化和慣性空化效應分別在BBB開放中的作用,如聲穿孔、增強的內吞作用、緊密連接破壞、血管周圍空間擴張和細胞外基質滲透。在低聲壓下,微泡與聲波同步體積壓縮和膨脹,從而產生推拉相互作用力和輻射力打開血管內皮細胞緊密連接;而在高聲壓下,微泡劇烈爆破,產生的微射流、沖擊波導致大規模的BBB開放以及細胞膜穿孔。
文章闡述了診斷性微泡、治療性微泡以及診療性微泡的特征及其在開放血腦屏障中的應用。治療藥物不僅可以通過靜電相互作用附著到微泡的表面;還可以通過疏水相互作用包埋于微泡殼中或者包封在微泡的空腔內。這些載藥微泡可在聚焦超聲的作用下產生空化效應打開血腦屏障,超聲爆破后還可以釋放其攜載的藥物并經開放的血腦屏障進入到大腦的特定病灶部位。
最后,文章總結了監控和評價超聲介導血腦屏障開放的影像學方法和相關的臨床實驗,包括使用磁共振引導和評估超聲聯合微泡開放治療腦膠質瘤、阿爾茨海默病以及帕金森癥,為超聲聯合微泡開放血腦屏障技術的臨床轉化鋪平了道路。
審核編輯:郭婷
-
監控
+關注
關注
6文章
2234瀏覽量
55366 -
超聲
+關注
關注
1文章
102瀏覽量
21572
原文標題:超聲介導血腦屏障開放:有效的腦部藥物輸送系統
文章出處:【微信號:MEMSensor,微信公眾號:MEMS】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
2024年諾貝爾物理學獎為何要頒給機器學習?
安泰:1600V高電壓放大器生物研究超聲測試怎么做
![安泰:1600V高電壓放大器<b class='flag-5'>生物</b>研究<b class='flag-5'>超聲</b>測試怎么做](https://file1.elecfans.com//web3/M00/06/D8/wKgZPGeQYf2ANDEUAAMWvpMxRw0479.png)
神經網絡理論研究的物理學思想介紹
![神經網絡理論研究的<b class='flag-5'>物理學</b>思想介紹](https://file1.elecfans.com/web3/M00/06/38/wKgZO2eIe1GAGH7OAAALbhMGQI0531.png)
NVIDIA發布Cosmos?平臺,助力物理AI系統發展
霍爾效應和量子霍爾效應的原理與機制
無所不能的MATLAB|證明曲速引擎的物理學原理
![無所不能的MATLAB|證明曲速引擎的<b class='flag-5'>物理學</b>原理](https://file1.elecfans.com/web3/M00/00/F5/wKgZPGdPtnqATAV9AAAPR8JrjpI622.gif)
Aigtek亮相2024首屆全國超聲大會,助力超聲研究事業高質量發展!
![Aigtek亮相2024首屆全國<b class='flag-5'>超聲</b>大會,助力<b class='flag-5'>超聲</b>研究事業高質量發展!](https://file.elecfans.com/web2/M00/43/14/pYYBAGJ8ZjKAAv8ZAAAYa7MwZKc717.jpg)
關于超聲波測速的物理問題怎么解
超聲波測速是利用超聲波的什么效應
電壓放大器在混凝土超聲波傳播衰減研究中的應用
![電壓放大器在混凝土<b class='flag-5'>超聲</b>波傳播衰減研究中的應用](https://file1.elecfans.com/web2/M00/FD/39/wKgZomaY2MmAWtscAACUPLrB7co608.png)
生物膜的電路中time常數的計算方法
更精確操縱光束:新型超表面設計推動光學物理學發展
![更精確操縱光束:新型超表面設計推動光學<b class='flag-5'>物理學</b>發展](https://file1.elecfans.com//web2/M00/F3/63/wKgZomZ8leKAaGyhAAGA8dMgH48342.jpg)
ATA-2168高壓放大器用途有哪些方面
![ATA-2168高壓放大器用途有哪些方面](https://file1.elecfans.com//web2/M00/C4/4C/wKgZomXycqmAKTgHAACSbp0zk-k600.jpg)
評論