近期,中國科學院上海光學精密機械研究所薄膜光學實驗室在飛秒激光制備負折射光學超材料方面取得進展,相關研究成果以“Fast Fabrication of Fishnet Optical Metamaterial Based on Femtosecond Laser Induced Stress Break Technique”為題發表于Nanomaterials上。
光學超材料在多個領域都有著廣泛應用前景。光學超表面可以利用光在亞波長表面的相位突變,實現光和電磁波的操縱和調制。飛秒激光加工技術具有加工速度快,無需掩模版,可在室溫下加工,可加工透明和超硬材料,成本低等優點,可實現光學波段超材料和超表面的快速制備。
研究人員利用飛秒激光直寫的方式快速制備了一種圓形漁網結構的負折射超材料,并揭示了飛秒激光與金屬-介質-金屬漁網結構同時存在熱熔融和應力破壞兩種相互作用機理。其中,熱熔融過程主導了飛秒激光與金屬的相互作用,導致上層和下層金屬粘在一起,使磁共振不能發生。
激光誘導的應力破壞過程主導了飛秒激光與介質相互作用過程,能夠抑制漁網結構中的熱擴散和熱損傷,使上層和下層金屬分開,使磁共振能夠發生。利用應力破壞的優勢,用飛秒激光直寫背向加工技術在金屬-介質-金屬膜中制備出亞波長尺寸周期性孔陣列。漁網結構超表面的透射和反射譜測試表明,飛秒激光直寫技術制備的漁網結構能夠產生磁共振,同時證明飛秒激光誘導的應力破壞技術可用于快速制備光學超表面。
基于背面燒蝕、高數值孔徑和超高斯光束等特征,利用飛秒激光誘導應力斷裂技術構筑的漁網光學超材料,其分辨率和加工速度分別可以達到 500 nm和 100 單位/秒,通過分光光度計測量結果可證明在漁網納米結構中發現了磁共振。玻璃基板上超材料的理論折射率在3225 nm波長處達到了-0.12。這項工作證實了飛秒激光便捷高效制備光學負折射超材料的可行性和廣闊的應用前景。
圖1.(a) 漁網結構的透射率和反射率的計算和測量,綠色框表示磁共振位置,紫色框表示電共振位置。(b)透射率曲線放大圖,紅色箭頭為2072 nm磁共振位置,黃色箭頭為2300 nm電共振位置,綠色箭頭為3225 nm磁共振位置。
相關工作得到了國家重點研發計劃和國家自然科學基金等項目的支持。 原文鏈接:https://pubmed.ncbi.nlm.nih.gov/33809597/
審核編輯 :李倩
-
超材料
+關注
關注
0文章
16瀏覽量
3848 -
光學儀
+關注
關注
0文章
5瀏覽量
1000
原文標題:上海光機所在飛秒激光制備光學超材料方面取得進展
文章出處:【微信號:光行天下,微信公眾號:光行天下】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
上海光機所在基于SiN-Ti:Sapphire異質集成的可見-近紅外波段寬帶波導放大器研究方面取得進展
![<b class='flag-5'>上海</b><b class='flag-5'>光機所在</b>基于SiN-Ti:Sapphire異質集成的可見-近紅外波段寬帶波導放大器研究<b class='flag-5'>方面</b><b class='flag-5'>取得</b><b class='flag-5'>進展</b>](https://file1.elecfans.com//web3/M00/02/5F/wKgZPGdfV9CASrXIAAEs1jeMado014.png)
上海光機所在二維材料偏振光電探測器研究方面取得進展
![<b class='flag-5'>上海</b><b class='flag-5'>光機所在</b>二維<b class='flag-5'>材料</b>偏振光電探測器研究<b class='flag-5'>方面</b><b class='flag-5'>取得</b><b class='flag-5'>進展</b>](https://file1.elecfans.com//web3/M00/01/CF/wKgZPGdYwVOAJ_WSAAEFeVREKHM366.jpg)
上海光機所在基于強太赫茲與超表面的硅基非線性光學研究上取得進展
![<b class='flag-5'>上海</b><b class='flag-5'>光機所在</b>基于強太赫茲與<b class='flag-5'>超</b>表面的硅基非線性<b class='flag-5'>光學</b>研究上<b class='flag-5'>取得</b><b class='flag-5'>進展</b>](https://file1.elecfans.com//web2/M00/0B/D1/wKgaomcqniOABcpNAAFti_hpO9o199.jpg)
上海光機所在基于空芯光纖的超快脈沖壓縮與紫外飛秒激光產生研究中取得進展
![<b class='flag-5'>上海</b><b class='flag-5'>光機所在</b>基于空芯光纖的<b class='flag-5'>超</b>快脈沖壓縮與紫外<b class='flag-5'>飛</b><b class='flag-5'>秒</b><b class='flag-5'>激光</b>產生研究中<b class='flag-5'>取得</b><b class='flag-5'>進展</b>](https://file1.elecfans.com//web2/M00/0B/BB/wKgaomcpSdeAKPY_AJJfdaMEU1k853.jpg)
上海光機所在重頻和波長靈活的飛秒脈沖激光產生方面取得進展
![<b class='flag-5'>上海</b><b class='flag-5'>光機所在</b>重頻和波長靈活的<b class='flag-5'>飛</b><b class='flag-5'>秒</b>脈沖<b class='flag-5'>激光</b>產生<b class='flag-5'>方面</b><b class='flag-5'>取得</b><b class='flag-5'>進展</b>](https://file1.elecfans.com//web2/M00/07/9D/wKgaombqAa6AWvT8AAJ1EBaRsW8580.jpg)
上海光機所在高重頻大能量中波紅外激光研究方面取得新進展
![<b class='flag-5'>上海</b><b class='flag-5'>光機所在</b>高重頻大能量中波紅外<b class='flag-5'>激光</b>研究<b class='flag-5'>方面</b><b class='flag-5'>取得</b>新<b class='flag-5'>進展</b>](https://file1.elecfans.com//web2/M00/D8/1E/wKgaomYoOCOAfeMjAAA5QtdrEJw909.gif)
評論