那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

鈉-鉀電解質界面相實現室溫/0°C固態鈉金屬電池研究

鋰電聯盟會長 ? 來源:科學材料站 ? 2023-03-30 10:54 ? 次閱讀

【研究背景】

基于無機固態電解質的金屬電池因其能量密度和安全性的優勢在電化學儲能領域具有巨大應用潛力。然而,一般的固態金屬電池(SSBs)在實際研究中發現在界面穩定性和低溫循環性能等方面仍需要進行改進以滿足商業化應用的需求。

【工作介紹】

近日,北京理工大學趙永杰副教授的研究團隊通過在金屬鈉負極和NASICON型Na3Zr2Si2PO12(NZSP)陶瓷電解質界面處原位構建Na-K界面相,有效促進界面載流子的傳輸動力學,鈉金屬枝晶的生長受到有效抑制。基于以上,固態鈉金屬電池在室溫和0oC下實現長時間和高效率循環。該文章發表在國際期刊Advanced Energy Materials上。博士研究生倪青為本文第一作者,通訊作者為北京理工大學材料學院趙永杰副教授和金海波教授。

【內容表述】

(1)該研究論文中,首先設計了一種局部靶向錨定策略,通過FESEM和TOF-SIMS等手段證明了NZSP氧化物陶瓷電解質與鈉金屬負極界面處的Na-K界面相的產生,該策略利用這種原位生成Na-K界面相,顯著提升了固態鈉金屬電池的循環穩定性和低溫性能。

(2)通過理論計算和實驗實踐,創造性地實現在NZSP鈉離子陶瓷電解質中K+的痕量傳輸;K+的存在有利于降低NZSP陶瓷電解質中Na+的協同轉移勢壘。

(3)對比K2MnFe(CN)6(KMF)匹配NZSP陶瓷電解質的固態電池和Na2MnFe(CN)6(NMF)基固態電池可以發現KMF基固態電池在25°C和0°C下均具有良好的電化學性能,這是由于形成Na-K界面相的原位構筑有效抑制了鈉金屬枝晶的生長,FESEM和TOF-SIMS也表明KMF基固態電池中的Na沉積行為更穩定。

112126cc-cea4-11ed-bfe3-dac502259ad0.png

圖1. 金屬負極/陶瓷電解質界面演化示意圖及局部靶向錨定策略。

1148f7a6-cea4-11ed-bfe3-dac502259ad0.png

圖2. (a-b)CINEB計算的Na+離子在NZSP電解質中的遷移示意圖及能壘;(c-d)CINEB計算的K+離子在NZSP中遷移示意圖及能壘。

115f6b08-cea4-11ed-bfe3-dac502259ad0.png

圖3. (a-c) NMF基固態鈉金屬電池的電化學性能;(d-j) KMF基固態鈉金屬電池的電化學性能。







審核編輯:劉清

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 電解質
    +關注

    關注

    6

    文章

    820

    瀏覽量

    20157
  • 固態電池
    +關注

    關注

    10

    文章

    705

    瀏覽量

    27943
  • 鋰金屬電池
    +關注

    關注

    0

    文章

    140

    瀏覽量

    4374

原文標題:鈉-鉀電解質界面相實現室溫/0°C固態鈉金屬電池

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯盟會長】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    研究論文::乙烯碳酸酯助力聚合物電解質升級,提升高電壓鋰金屬電池性能

    1、 導讀 >> ? ? 該研究探討了乙烯碳酸酯(VC)添加劑在聚丙烯酸酯(PEA)基固態聚合物電解質中的作用。結果表明,VC添加劑顯著提升了電解質的鋰離子電導率和遷移數,同時提高了鋰
    的頭像 發表于 01-15 10:49 ?214次閱讀
    <b class='flag-5'>研究</b>論文::乙烯碳酸酯助力聚合物<b class='flag-5'>電解質</b>升級,提升高電壓鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>性能

    p-π共軛有機界面層助力金屬電池穩定運行

    研究背景 由于天然豐度高、電位適中、理論容量高(1166 mAh g-1),金屬負極被認為是有前途的下一代可充電池負極材料的有力候選者。然而,在傳統有機
    的頭像 發表于 01-14 10:43 ?196次閱讀
    p-π共軛有機<b class='flag-5'>界面</b>層助力<b class='flag-5'>鈉</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>穩定運行

    陳軍院士團隊最新Angew,聚合物電解質新突破

    研究背景 固態金屬電池(SSLMBs)因其高的能量密度和優異的安全性能在能源存儲領域受到廣泛關注。然而,現有固態
    的頭像 發表于 01-06 09:45 ?177次閱讀
    陳軍院士團隊最新Angew,聚合物<b class='flag-5'>電解質</b>新突破

    一種薄型層狀固態電解質的設計策略

    研 究 背 景 用固態電解質(SSE)代替有機電解液已被證明是克服高能量密度鋰金屬電池安全性問題的有效途徑。為了開發性能優異的全
    的頭像 發表于 12-31 11:21 ?207次閱讀
    一種薄型層狀<b class='flag-5'>固態</b><b class='flag-5'>電解質</b>的設計策略

    半互穿網絡電解質用于高電壓鋰金屬電池

    研究背景 基于高鎳正極的鋰金屬電池的能量密度有望超過400 Wh kg-1,然而在高電壓充電時,高鎳正極在高度去鋰化狀態下,Ni4+的表面反應性顯著增強,這會催化正極與電解質
    的頭像 發表于 12-23 09:38 ?340次閱讀
    半互穿網絡<b class='flag-5'>電解質</b>用于高電壓鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    多功能高熵合金納米層實現長壽命無負極金屬電池

    論文簡介 本研究報道了一種新型的無負極金屬電池(AFSMBs),通過在商業鋁箔上構建一層由高熵合金(NbMoTaWV)組成的納米層,顯著提高了電池
    的頭像 發表于 12-18 10:29 ?583次閱讀
    多功能高熵合金納米層<b class='flag-5'>實現</b>長壽命無負極<b class='flag-5'>鈉</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    電新突破:實現寬溫長壽命電池電解液革新

    是SIBs電解質的主要成分,很大程度上決定了電解質的電化學特性。目前常用的鈉鹽主要包括六氟磷酸鈉(NaPF6)、高氯酸鈉(NaClO4)、雙(三氟甲磺酰)亞胺(NaTFSI)和雙(氟磺酰)亞胺
    的頭像 發表于 11-28 09:51 ?457次閱讀
    <b class='flag-5'>鈉</b>電新突破:<b class='flag-5'>實現</b>寬溫長壽命<b class='flag-5'>電池</b>的<b class='flag-5'>電解</b>液革新

    通過電荷分離型共價有機框架實現對鋰金屬電池固態電解質界面的精準調控

    (-3.04 V vs SHE),被認為是次世代電池的最優選擇。然而,鋰金屬負極的實際應用面臨諸多挑戰,其中最關鍵的問題是鋰枝晶的生長和副反應的發生。這些問題不僅會導致電池壽命急劇下降,還會引發嚴重的安全隱患,如短路和熱失控。
    的頭像 發表于 11-27 10:02 ?411次閱讀
    通過電荷分離型共價有機框架<b class='flag-5'>實現</b>對鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b><b class='flag-5'>固態</b><b class='flag-5'>電解質</b><b class='flag-5'>界面</b>的精準調控

    固態電池中復合鋰陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲能領域具有很大的應用前景。
    的頭像 發表于 10-29 16:53 ?543次閱讀
    <b class='flag-5'>固態</b><b class='flag-5'>電池</b>中復合鋰陽極上固體<b class='flag-5'>電解質</b><b class='flag-5'>界面</b>的調控

    一種新型的金屬電池負極穩定化策略

    金屬電池因其高理論能量密度和低氧化還原電位而具有廣泛的應用前景。然而,金屬陽極與電解液之間不
    的頭像 發表于 10-28 09:36 ?518次閱讀
    一種新型的<b class='flag-5'>鈉</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>負極穩定化策略

    多家上市公司回應固態電池 固態電池應用加速

    固態電池技術采用鋰、制成的玻璃化合物為傳導物質,取代以往鋰電池電解液,大大提升鋰電池的能量
    的頭像 發表于 08-22 16:01 ?787次閱讀

    鈮酸鋰調控固態電解質電場結構促進鋰離子高效傳輸!

    聚合物基固態電解質得益于其易加工性,最有希望應用于下一代固態金屬電池
    的頭像 發表于 05-09 10:37 ?926次閱讀
    鈮酸鋰調控<b class='flag-5'>固態</b><b class='flag-5'>電解質</b>電場結構促進鋰離子高效傳輸!

    固態金屬電池的外部壓力研究

    目前,使用易燃液體電解質的商用鋰離子電池無法滿足日益增長的高能量密度和安全性要求。用無機固態電解質(SSE)取代傳統的液體電解質有望在很大程
    的頭像 發表于 04-26 09:02 ?1078次閱讀
    <b class='flag-5'>固態</b>鋰<b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的外部壓力<b class='flag-5'>研究</b>

    請問聚合物電解質是如何進行離子傳導的呢?

    在目前的聚合物電解質體系中,高分子聚合物在室溫下都有明顯的結晶性,這也是室溫固態聚合物電解質的電導率遠遠低于液態
    的頭像 發表于 03-15 14:11 ?1366次閱讀
    請問聚合物<b class='flag-5'>電解質</b>是如何進行離子傳導的呢?

    不同類型的電池電解質都是什么?

    聚合物,如固態電池固態陶瓷和熔融鹽(如鈉硫電池)中使用的聚合物。 鉛酸電池 鉛酸電池使用硫酸作
    的頭像 發表于 02-27 17:42 ?1770次閱讀
    百家乐官网详解| 沙龙百家乐官网赌场娱乐网规则| 百家乐官网制胜法| 昆明百家乐官网装修装潢有限公司| 澳门百家乐官网网站bt| 百家乐是真的吗| 威尼斯人娱乐网址| 珠江太阳城广场| 百家乐官网案件讯问| 百家乐官网是不是有假| 百家乐官网路子技巧| 黄金城百家乐官网苹果版| 万宝路百家乐的玩法技巧和规则| 中信娱乐城| 都坊百家乐官网的玩法技巧和规则| 百家乐专业赌博| 云鼎娱乐城优惠| 百家乐官网桌子豪华| 顶尖百家乐官网的玩法技巧和规则 | 圣淘沙娱乐| 现金博彩网| 战神百家乐官网的玩法技巧和规则 | 娱乐城注册送38| 新百家乐官网的玩法技巧和规则| 全迅网百家乐的玩法技巧和规则| 大冶市| 百家乐官网赌博代理| 百家乐在线赌场娱乐网规则| 百家乐官网对子赔率| 百家乐大赢家书籍| 大发888足球开户| 静安区| 澳门百家乐视频| 钻石娱乐开户| 百家乐官网桌子豪华| 金三角百家乐的玩法技巧和规则 | 德州扑克和梭哈| 万龙百家乐官网的玩法技巧和规则 | 百家乐官网游戏规则介绍| 网上的百家乐是假的吗| 百家乐官网游戏机出千|