前言
自2019年12月新型冠狀病毒(SARA-CoV-2)爆發(fā)以來(lái),全球經(jīng)濟(jì)和社會(huì)遭受了巨大損失。感染新冠病毒的患者可能無(wú)癥狀或表現(xiàn)出多種癥狀,包括呼吸窘迫、凝血障礙、腹痛或腹瀉甚至多器官系統(tǒng)性損傷。
此外,病毒目前已出現(xiàn)了多種變異體,對(duì)全球健康造成了更大的威脅。盡管目前已經(jīng)開(kāi)發(fā)了幾種疫苗,但一些變異體對(duì)這些疫苗的敏感性逐步降低,因此,迫切需要全面了解新冠肺炎的發(fā)病機(jī)制,并開(kāi)發(fā)更有效的療法。
器官芯片是一種生物工程微流體細(xì)胞培養(yǎng)裝置,通過(guò)對(duì)流體流動(dòng)、機(jī)械信號(hào)和多細(xì)胞相互作用的精確控制來(lái)模擬體內(nèi)細(xì)胞微環(huán)境和器官的關(guān)鍵功能。通常,器官芯片模型中的細(xì)胞來(lái)源包括細(xì)胞系、原代細(xì)胞和干細(xì)胞。
器官芯片常被用于研究病毒感染,如包含原代人體肝細(xì)胞的3D肝芯片被用來(lái)研究HBV感染。與動(dòng)物模型和傳統(tǒng)細(xì)胞培養(yǎng)相比,器官芯片模型對(duì)人類病理生理學(xué)的研究更加精確直觀,可以為病毒感染研究提供有價(jià)值的臨床前平臺(tái)。
本文主要介紹器官芯片用于新冠病毒的相關(guān)研究進(jìn)展,為器官芯片應(yīng)用在疾病建模、藥物/疫苗開(kāi)發(fā)、免疫反應(yīng)、病毒傳播、宿主病毒相互作用、個(gè)性化治療等方面提供啟示。
器官芯片在病理生理學(xué)和宿主免疫反應(yīng)研究的應(yīng)用
為了研究發(fā)病機(jī)制并開(kāi)發(fā)有效療法,研究人員開(kāi)發(fā)了多種器官芯片來(lái)探究人類對(duì)新冠病毒感染的生理和病理反應(yīng)。
如利用肺芯片可以模擬天然新冠病毒的肺泡感染并評(píng)估抗病毒化合物的功效。通過(guò)在流體流動(dòng)下對(duì)肺泡上皮細(xì)胞、微血管內(nèi)皮細(xì)胞和循環(huán)免疫細(xì)胞進(jìn)行三重培養(yǎng),這種肺芯片可以重建人類肺泡-毛細(xì)血管屏障的關(guān)鍵特征。在肺泡通道接種新冠病毒顆粒后,人肺上皮細(xì)胞對(duì)病毒感染的敏感性高于內(nèi)皮細(xì)胞。
利用肺芯片研究新冠病毒誘導(dǎo)的組織損傷和免疫反應(yīng)
另外,腸道芯片也可以用于探索新冠肺炎引起的腸道反應(yīng)。流體流動(dòng)或機(jī)械信號(hào)對(duì)細(xì)胞分化、功能和絨毛結(jié)構(gòu)形成有重要影響,這在腸道中很關(guān)鍵。流動(dòng)條件下模擬腸道病毒感染的芯片模型具備其他體外模型不能實(shí)現(xiàn)的優(yōu)勢(shì)。
如圖展示了一種人腸道新冠病毒感染芯片模型,該模型解釋了新冠病毒誘導(dǎo)的腸道損傷和免疫反應(yīng)。利用這個(gè)模型,研究者驗(yàn)證了腸上皮是病毒感染的潛在入口,并顯示出病毒誘導(dǎo)的屏障損傷,包括破壞的腸絨毛結(jié)構(gòu)和內(nèi)皮連接。此外,有研究揭示了腸道菌群在新冠病毒感染中的潛在抗病毒能力和治療價(jià)值,未來(lái)將腸道微生物與器官芯片結(jié)合將有助于研究它們?cè)谛鹿诓《靖腥局械墓δ堋?/p>
在流動(dòng)條件下,通過(guò)在多層通道中共培養(yǎng)腸上皮細(xì)胞、內(nèi)皮細(xì)胞和免疫細(xì)胞,構(gòu)建了仿生人類腸道芯片
器官芯片在藥物評(píng)價(jià)與篩選中的應(yīng)用
目前,藥物測(cè)試在很大程度上依賴于動(dòng)物模型和單層細(xì)胞培養(yǎng),但它們往往不能準(zhǔn)確地預(yù)測(cè)人類對(duì)藥物的反應(yīng)。器官芯片可以作為疾病模型反映宿主細(xì)胞對(duì)病毒的反應(yīng),從而在快速篩選新藥中發(fā)揮作用。
在被新冠病毒感染的肺芯片中,對(duì)瑞德西韋(remdesivir)的療效進(jìn)行了評(píng)估,結(jié)果表明其會(huì)抑制病毒復(fù)制和緩解肺泡屏障損壞。另一種感染新冠病毒的肺泡芯片表明,妥珠單抗(tocilizumab)通過(guò)減少炎癥反應(yīng)而不是抑制病毒復(fù)制來(lái)減緩屏障完整性的喪失。
此外,在感染新冠病毒的支氣管芯片模型中,已批準(zhǔn)藥物(如阿莫地喹和托瑞米芬)可以作為潛在的病毒入侵抑制劑。人體器官芯片在篩選潛在藥物上可以作為動(dòng)物模型的可行替代品。
總結(jié)與討論
本文分享了器官芯片在新型冠狀病毒病理生理學(xué)及藥物篩選評(píng)價(jià)中的相關(guān)研究進(jìn)展。新冠肺炎是一種全身性疾病,涉及新冠病毒感染和在肺、肝、腦、血管、腎和腸等多個(gè)器官中的增殖。
因此,我們需要開(kāi)發(fā)更復(fù)雜的系統(tǒng)來(lái)探索不同器官和病毒之間的相互作用。多器官芯片可以以相互聯(lián)系的方式概括器官和器官串?dāng)_并模擬對(duì)感染的全身反應(yīng),加速藥物開(kāi)發(fā)與精準(zhǔn)醫(yī)療的進(jìn)程。
滿足病毒學(xué)研究需要的下一代人體器官模型示意圖
未來(lái),器官芯片還將與更多技術(shù)(如在線生物傳感器、3D打印、基因編輯、多組學(xué)等)結(jié)合,來(lái)創(chuàng)建更復(fù)雜的器官模型,這些器官模型將揭示病原體傳播的特征,并為系統(tǒng)反應(yīng)分析、個(gè)性化醫(yī)療以及新藥和疫苗開(kāi)發(fā)提供新的機(jī)會(huì)。
點(diǎn)成Beonchip系列微流控芯片主要用于體外診斷與分析的多功能細(xì)胞培養(yǎng),采用COP材質(zhì),表面親水,無(wú)自發(fā)熒光和非特異性吸附。類似載玻片的模式,可在化學(xué)梯度下進(jìn)行3D或2D細(xì)胞培養(yǎng),模擬仿生環(huán)境。點(diǎn)成可提供四種標(biāo)準(zhǔn)化微流控芯片,也可根據(jù)您的需求進(jìn)行定制。主要應(yīng)用領(lǐng)域?yàn)椋簠f(xié)同培養(yǎng)、侵襲研究、循環(huán)粒子、氣液界面、串?dāng)_研究、缺氧、化學(xué)梯度、免疫系統(tǒng)研究、機(jī)械剪切應(yīng)力等。
點(diǎn)成Beonchip微流控芯片
參考文獻(xiàn):Wang Y, Wang P, Qin J. Human Organoids and Organs-on-Chips for Addressing COVID-19 Challenges. Adv Sci (Weinh). 2022 Apr;9(10):e2105187. doi: 10.1002/advs.202105187.
注:本文內(nèi)容參考于上述文獻(xiàn),僅供分享交流使用
-
芯片
+關(guān)注
關(guān)注
456文章
51192瀏覽量
427323
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論