本文旨在討論在選用近紅外至中紅外光源時一些注意事項和方案建議。文中主要對光參量振蕩器(OPO)、光參量放大器(OPA)、量子級聯激光器、超連續譜光源四大類做了簡單介紹和對比。
不同光譜范圍定義
通常而言,人們談起紅外光源,指的是真空波長大于 ~ 700–800 nm(可見波長范圍的上限)的光。
該描述中沒有明確定義具體波長下限是因為人眼對于對于紅外感是緩慢降低,而非斷崖式截止。
例如,700nm處的光在人眼中的響應程度已經非常低,但是如果光足夠強,人眼甚至可以看到波長超過 750 nm 的某些激光二極管發出的光,這也使得紅外激光存在安全風險--即使人眼感覺不是很亮,其實際功率卻可能已經很高。
同樣,和紅外光源下限范圍(700nm~800nm)一樣,紅外光源的上限定義范圍也不確定,通常理解而言,大約為1mm
以下是一些關于紅外波段的常用定義:
- 近紅外光譜區域(也稱 IR-A),范圍~ 750 至 1400 nm
在這個波長區域發射的激光很容易噪聲人眼安全問題,因為人眼聚焦功能兼容近紅外和可見光范圍,使得近紅外波段光源可以以相同的方式傳輸并聚焦到敏感的視網膜,但是近紅外波段光并不會觸發保護性眨眼反射。導致人眼因為感知不敏感而使得視網膜承受過大能量損壞,所以在這個波段使用光源要充分注意用眼保護。
- 短波長紅外線(SWIR、IR-B)范圍從 1.4 到 3 μm。
這個區域對眼睛來說相對安全,因為這種光在到達視網膜之前就被眼睛吸收了。
例如,用于光纖通信的摻鉺光纖放大器就在該區域運行。
- 中波紅外 (MWIR) 范圍為 3 至 8 μm。
大氣在該地區的部分地區表現出強烈的吸收作用;有許多大氣氣體在這個波段會出現吸收譜線,例如 二氧化碳 (CO(2)) 和水蒸氣 (H(2)O)。
也因為許多氣體在這個波段表現出表現出很強的吸收特性,這使得該光譜區域很多用于對于大氣中氣體檢測。
- 長波紅外 (LWIR) 范圍為 8 至 15 μm。
- 其次是遠紅外 (FIR),范圍從 15 μm 到 1 mm(但也有定義從50μm開始,見ISO 20473)。
該光譜區域主要用于熱成像。
本文旨在討論在選用近紅外至中紅外光源寬帶可調波長激光器,它們可能包含上述中的短波長紅外線(SWIR、IR-B ,范圍從 1.4 到 3 μm )和部分中波紅外 (MWIR,范圍為 3 至 8 μm)
典型應用
這個波段的個光源的典型應用是在微量氣體的激光吸收光譜中的識別(例如醫學診斷和環境監測中的遙感)。在這里,人們利用中紅外光譜區許多分子的強烈和特征吸收帶(作為“分子指紋”),進行分析。雖然人們也可以通過近紅外區的泛吸收線來研究其中一些分子,因為近紅外激光源更容易制備,但使用中紅外區域中強大的基本吸收線具有更高的靈敏度是有優勢的。
在中紅外成像中,這個波段的個光源也有應用,其中人們通常利用的是中紅外光能更深入材料且散射較少的優勢。例如在對應的高光譜成像應用中,近紅外至中紅外可以為每個像素(或體素)提供光譜信息。
由于中紅外激光源(例如光纖激光器)的不斷發展,非金屬激光材料加工的應用也變得越來越實用。通常,人們利用某些材料對紅外光的強烈吸收,例如聚合物薄膜,選擇性地去除材料。
一個典型的案例是用于電子和光電子器件電極的氧化銦錫(ITO)透明導電膜需要通過選擇性激光燒蝕進行結構化。另一個例子是光纖上涂層的精確剝離。此類應用中在該波段所需功率水平通常遠低于激光切割等應用所需的功率水平。
近紅外至中紅外光源還被軍方用于針對熱導導導彈的定向紅外對策。除了較高的輸出功率適合致盲紅外相機外,還需要在大氣傳輸波段(約3-4μm和8-13μm附近)內具有廣泛的光譜覆蓋,以防止簡單的缺口濾光片保護紅外探測器。
上述的大氣傳輸窗口也可以用于通過定向光束進行自由空間光通信,量子級聯激光器很多用于此類應用
在某些情況下,中紅外超短脈沖是必需的,例如,人們可以在激光光譜學中使用中紅外頻率梳,或利用超短脈沖的高峰值強度進行激光。這可以通過鎖模激光器來生成。
特別的是,對于近紅外至中紅外的光源,一些應用對于掃描波長或者波長可調有著特別需求,而近紅外至中紅外波長可調諧激光器在這些應用中也扮演著極其重要的角色
例如在光譜學中,中紅外可調諧激光在無論是氣體傳感、環境監測還是化學分析中,中紅外可調諧激光器都是必不可少的工具。科學家們通過調整激光的波長,將其精確地定位在中紅外范圍內,以此探測特定的分子吸收線。這樣一來,他們可以獲得有關物質組成和性質的詳細信息,如同破解了一本藏滿秘密的密碼書。
在醫學成像領域,中紅外可調諧激光器也發揮著重要作用。它們被廣泛應用于非侵入性診斷和成像技術中。通過精確調諧激光的波長,中紅外光線可以穿透生物組織,帶來高分辨率的圖像。這對于檢測和診斷疾病以及異常情況具有重要意義,猶如一道窺探人體內部秘密的神奇之光。
國防和安全領域同樣離不開中紅外可調諧激光器的應用。在紅外對抗中,尤其是針對熱追蹤導彈的對抗中,這些激光器發揮著關鍵作用。例如,定向紅外對抗系統(DIRCM)就能保護飛機免受導彈的追蹤與攻擊。通過快速調整激光的波長,這些系統可以干擾來襲導彈的制導系統,瞬間扭轉戰局,宛如一把守護天空的神劍。
遙感技術是對地球的觀測和監測的重要手段,而其中紅外可調諧激光器扮演著關鍵角色。環境監測、大氣研究和地球觀測等領域都依賴于這些激光器的應用。中紅外可調諧激光器使科學家能夠測量大氣中氣體的特定吸收線,提供了寶貴的數據,助力氣候研究、污染監測和天氣預報,猶如一道洞察自然奧秘的魔鏡。
在工業環境中,中紅外可調諧激光器被廣泛用于精密材料加工。通過將激光調整到某些材料所強烈吸收的波長,它們實現了選擇性的燒蝕、切割或焊接。這使得電子、半導體和微細加工等領域的精確制造成為可能。中紅外可調諧激光器如同一把精工打磨的刻刀,讓工業界能夠雕琢出精雕細刻的產品,顯現出技術的華彩光芒。
近紅外至中紅外可調諧激光器產品類型和選型特點
很多技術都可以產生近紅外至中紅外激光,例如早期基于三元鉛化合物或四元化合物獲得的各種類型的鉛鹽激光器,以及常見的摻雜絕緣體體激光器,各種光纖激光器,二氧化碳氣體激光器等等,這里著重討論幾種可以可以在近紅外至中紅外大范圍波長可調的激光原理技術和產品。
1
?
光參量振蕩器、放大器和發生器(OPO和OPA)
在非線性頻率轉換系統中,用一個近紅外激光器,泵浦光學參量振蕩器 (OPO)、放大器 (OPA) 或發生器 (OPG),可以生成中紅外光譜區域中的閑頻光
一些例子:
- 在納秒OPO中紅外激光器中,可以用Q 開關激光器作為泵浦源。用于此類應用的常見晶體材料有二磷化鋅鍺(ZGP、ZnGeP(2))、硫化銀鎵和硒化物(AgGaS(2)、AgGaSe(2))、硒化鎵 (GaSe) 和硒化鎘 (CdSe)。
由于許多這些材料在 1 μm 區域不透明,因此通常必須使用串聯 OPO:第一個 OPO 將 1 μm 激光輻射轉換為更長的波長,然后用于泵浦實際的中紅外 OPO。
而后者的信號和閑頻都可以在中紅外光譜區。
- 1064 nm 的鎖模皮秒 Nd:YVO(4) 激光器也可用于同步泵浦 OPO 與 LiNbO(3) 晶體,允許閑頻光輸出達 4 μm 甚至 4.5 μm,其波長限制主要是優于在長波長處增加閑頻光吸收。所以 基于此原理的OPO 通常會有一個諧振信號。
這樣的設備可以很容易地產生具有數十毫焦耳能量的脈沖。輸出波長可在數百納米范圍內調諧。
昊量光電可提供以下一些常見的產品參數表:
2
?
CWOPO
相比較于一般OPO的脈沖激發,進來的CWOPO技術產品中提供了基于如下框架的中紅外激光器
1) DFB 光纖激光器和放大器
2) DFB 光纖激光器控制
3) OPO 光學部分以及控制
此類產品可以提供1435 – 4138 nm (6969-2416 cm-1) 的中紅外范圍內提供連續可調的輸出波長,于此同時,相比于脈沖OPO,此類產品可以提供很優秀的線寬 (<100 MHz )
這使得此類產品在紅外定標,光譜分析等應用更具優化的可能
昊量光電可提供以下一些常見的產品參數表:
-
放大器
+關注
關注
143文章
13634瀏覽量
214214 -
激光器
+關注
關注
17文章
2540瀏覽量
60709 -
光源
+關注
關注
3文章
711瀏覽量
67897
發布評論請先 登錄
相關推薦
評論