那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

卷積神經網絡算法代碼matlab

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-08-21 16:50 ? 次閱讀
卷積神經網絡算法代碼matlab

卷積神經網絡(Convolutional Neural Network,CNN)是一種深度學習網絡模型,其特點是具有卷積層(Convolutional Layer)、池化層(Pooling Layer)和全連接層(Fully Connected Layer)。卷積神經網絡源自對腦神經細胞的研究,能夠有效地處理大規模的視覺和語音數據。本文將詳細介紹卷積神經網絡的工作原理和實現方法。

一、卷積神經網絡的工作原理

卷積神經網絡是一種分層結構的神經網絡模型,其中每一層都對數據進行特征提取,并通過不斷的訓練和調整,最終得到最佳的特征提取方式。在卷積神經網絡中,每一層的輸入都是上一層所提取的特征。由于網絡的每一層都擁有不同的卷積核和池化方式,因此卷積神經網絡能夠有效地提取高級別的特征,從而實現對大規模的圖像和語音數據進行處理。

卷積神經網絡中的卷積層和池化層是網絡的核心,在這里我們來分別介紹一下它們的工作原理:

1、卷積層

卷積層是卷積神經網絡的核心層,它包括多個卷積核和偏置項,具有對圖像進行卷積計算的作用。卷積神經網絡采用卷積操作來代替全連接操作,這種方法能夠有效地減少訓練參數的數量,并使得網絡能夠更好地適應大規模的數據。卷積神經網絡中的每一個卷積核都是一個由一系列權重組成的濾波器,可以將圖像特征進行卷積操作從而得到更高級別的圖像特征,具有有效地提取局部和全局圖像特征的特點。

卷積神經網絡中每一個卷積層都包含了多個卷積核,它們分別對輸入的圖像進行卷積計算,并將得到的卷積特征圖進行疊加或下采樣處理。具體來說,卷積核在對輸入圖像進行卷積操作時,通過對應像素的權重加權求和,從而得到一個輸出值。通過對于不同位置的像素進行卷積操作,我們可以得到一組特定大小的輸出特征圖。輸出的特征圖數量等于卷積核的數量,這些特征圖包含了卷積操作提取的當前的特征。

2、池化層

池化層是卷積神經網絡中的另一種代表性層。它通過對特征圖進行降采樣的方式,將輸入數據進行壓縮,從而達到減少計算量和過擬合的目的。池化層進行局部平均或者最大值的縮小處理,可以增強模型的魯棒性和不變性,具有有效地減少網絡參數的數量和運算量的特點。

卷積神經網絡中常見的池化方式有平均池化和最大值池化,前者通過計算局部區域內像素的平均值,后者計算局部區域內像素的最大值。通過對特征圖進行不斷的縮小和壓縮,我們可以在不損失大量信息的情況下,達到網絡結構簡潔化和提升穩定性的目的。

二、卷積神經網絡matlab實現

下面我們以matlab為例,通過實現一個模擬卷積神經網絡的例子來介紹卷積神經網絡算法的實現方法。

1、數據預處理

首先,我們需要對數據進行預處理。在本例中,我們使用mnist手寫數字數據集來進行訓練和測試。該數據集包含了60000張訓練圖像和10000張測試圖像,每張圖像大小為28*28像素。

在這里,我們使用matlab中的imageDatastore函數來讀取mnist數據集。該函數能夠自動將數據轉換為matlab文件,可以大大簡化數據的讀取和預處理過程。

imageSize = [28,28,1];
numTrainFiles = 60000;
numValidFiles = 5000;
numTestFiles = 10000;
trainFolder = "mnist/train";
testFolder = "mnist/test";
imdsTrain = imageDatastore(trainFolder,"IncludeSubfolders",true,"FileExtensions",".jpg","LabelSource","foldernames","ReadFcn",@(x)readAndPreprocessImage(x,imageSize));
imdsTest = imageDatastore(testFolder,"IncludeSubfolders",true,"FileExtensions",".jpg","LabelSource","foldernames","ReadFcn",@(x)readAndPreprocessImage(x,imageSize));
[trainImgs,validImgs] = splitEachLabel(imdsTrain,numTrainFiles,numValidFiles,"randomize");
testImgs = imdsTest;
trainLabels = trainImgs.Labels;
validLabels = validImgs.Labels;
testLabels = testImgs.Labels;

2、卷積神經網絡模型定義

接下來,我們需要定義卷積神經網絡的模型。在這里,我們定義一個網絡結構為“Convolution - ReLU - Pooling - Convolution - ReLU - Pooling - FullyConnected”的模型。其中,在每一層中,我們都可以定義不同的參數,比如卷積核大小、池化方式、激活函數等。

numFilters = 32;
filterSize = [5,5];
poolSize = [2,2];
poolStride = [2,2];
layers = [
imageInputLayer(imageSize)
convolution2dLayer(filterSize,numFilters,"Padding",[2 2 2 2])
reluLayer()
maxPooling2dLayer(poolSize,"Stride",poolStride)
convolution2dLayer(filterSize,numFilters,"Padding",[2 2 2 2])
reluLayer()
maxPooling2dLayer(poolSize,"Stride",poolStride)
fullyConnectedLayer(10)
softmaxLayer()
classificationLayer()
];

3、訓練和測試模型

最后,我們使用matlab中的trainNetwork函數來訓練和測試我們的模型。該函數可以自動計算每個epoch的損失和精度,并更新網絡的權重和偏置項參數。

options = trainingOptions(
"adam",
"InitialLearnRate",0.001,
"MaxEpochs",10,
"ValidationData",{validImgs,validLabels},
"ValidationFrequency",50,
"Plots","training-progress"
);

net = trainNetwork(trainImgs,trainLabels,layers,options);

接下來,我們使用matlab中的classify函數來對測試數據進行分類。在這里,我們可以計算出模型的分類準確率和損失函數值。

[testPreds,probs] = classify(net,testImgs);
testAccuracy = sum(testPreds == testLabels)/numel(testLabels);
testLoss = loss(net,testImgs,testLabels);

最后,我們可以輸出測試結果,以及可視化顯示每一層的特征圖,以便更好地理解網絡的特征提取過程。

figure('Units','Normalized','Position',[0.5 0.15 0.25 0.7]);
for i=1:numFilters
subplot(8,4,i);
imshow(net.Layers(2).Weights(:,:,1,i));
title(strcat("Filter ",num2str(i)));
end

這樣就完成了卷積神經網絡的模擬實現。我們可以看到,卷積神經網絡通過對數據層次化分析和提取,有效地提升了圖像分類、目標定位和物體識別等應用的精度和穩定性。

三、總結與展望

卷積神經網絡作為一種深度學習網絡模型,具有對圖像和語音等大規模數據進行處理的優越性能。在實現中,我們需要對數據進行預處理,并根據不同的需求定義不同的網絡結構和參數,通過訓練得到最優的特征提取方式。實踐證明,卷積神經網絡在圖像分類、目標檢測、自然語言處理等領域都取得了非常顯著的成果,未來可望在更廣泛的領域中得到廣泛應用。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • matlab
    +關注

    關注

    185

    文章

    2980

    瀏覽量

    231007
  • 濾波器
    +關注

    關注

    161

    文章

    7860

    瀏覽量

    178928
  • 卷積神經網絡

    關注

    4

    文章

    367

    瀏覽量

    11914
收藏 人收藏

    評論

    相關推薦

    卷積神經網絡與傳統神經網絡的比較

    在深度學習領域,神經網絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經網絡(CNNs)和傳統神經網絡是兩種常見的模型。 1. 結構差異 1.1 傳統
    的頭像 發表于 11-15 14:53 ?739次閱讀

    卷積神經網絡的基本原理與算法

    ),是深度學習的代表算法之一。 一、基本原理 卷積運算 卷積運算是卷積神經網絡的核心,用于提取圖像中的局部特征。 定義
    的頭像 發表于 11-15 14:47 ?998次閱讀

    卷積神經網絡的基本概念、原理及特點

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。本文將詳細介紹卷積
    的頭像 發表于 07-11 14:38 ?1333次閱讀

    BP神經網絡卷積神經網絡的關系

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學習領域
    的頭像 發表于 07-10 15:24 ?1733次閱讀

    循環神經網絡卷積神經網絡的區別

    循環神經網絡(Recurrent Neural Network,RNN)和卷積神經網絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的神經網絡
    的頭像 發表于 07-04 14:24 ?1502次閱讀

    卷積神經網絡和bp神經網絡的區別在哪

    結構、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經網絡的詳細比較: 基本結構 BP神經網絡是一種多層前饋神經網絡,由輸入層、隱藏層和輸出層組成。每個神經元之間通過權重連接,
    的頭像 發表于 07-04 09:49 ?1.2w次閱讀

    卷積神經網絡的實現原理

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 10:49 ?655次閱讀

    如何使用MATLAB神經網絡工具箱

    和訓練神經網絡。本文將介紹如何使用MATLAB神經網絡工具箱,以及如何解讀神經網絡的結果圖。 MATLAB
    的頭像 發表于 07-03 10:34 ?2658次閱讀

    bp神經網絡卷積神經網絡區別是什么

    結構、原理、應用場景等方面都存在一定的差異。以下是對這兩種神經網絡的比較: 基本結構 BP神經網絡是一種多層前饋神經網絡,由輸入層、隱藏層和輸出層組成。每個神經元之間通過權重連接,并通
    的頭像 發表于 07-03 10:12 ?1357次閱讀

    卷積神經網絡分類方法有哪些

    卷積神經網絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:40 ?554次閱讀

    卷積神經網絡訓練的是什么

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡
    的頭像 發表于 07-03 09:15 ?517次閱讀

    卷積神經網絡的原理與實現

    1.卷積神經網絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。 卷積神經網絡是一種前饋
    的頭像 發表于 07-02 16:47 ?723次閱讀

    卷積神經網絡的基本結構及其功能

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經網絡的基
    的頭像 發表于 07-02 14:45 ?2553次閱讀

    卷積神經網絡的原理是什么

    卷積神經網絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹卷積神經網絡的原
    的頭像 發表于 07-02 14:44 ?806次閱讀

    卷積神經網絡和bp神經網絡的區別

    卷積神經網絡(Convolutional Neural Networks,簡稱CNN)和BP神經網絡(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發表于 07-02 14:24 ?4711次閱讀
    最新百家乐电脑游戏机| 网络百家乐电脑| 保单百家乐官网技巧| 正品百家乐官网电话| 大发888游戏平台46| 易胜博国际娱乐| 威尼斯人娱乐城官网lm0| 威尼斯人娱乐城提款| 玩百家乐官网怎么能赢呢| 百家乐官网网上真钱麻将| 开棋牌室赚钱吗| 豪享博百家乐的玩法技巧和规则| 百家乐官网笑话| 德州扑克 技巧| 百家乐群sun811| 澳门百家乐官网娱乐城信誉如何| 钱柜百家乐的玩法技巧和规则| CEO百家乐官网的玩法技巧和规则| 德江县| 海立方娱乐| 瓮安县| 金木棉百家乐网络破解| 百家乐视频小游戏| 百家乐官网娱乐城代理| 北京太阳城国际老年公寓| 精英百家乐现金网| 百家乐官网网站平台| 百家乐官网赌博代理荐| 龙博百家乐官网的玩法技巧和规则 | 大发888 真钱娱乐场| 赌博粉| 百家乐官网秘| e世博百家乐娱乐场| 百家乐赌场大全| 舟山星空棋牌下载| 百家乐官网赢钱战略| 百家乐官网电脑游戏机投注法实例| 百家乐官网食杂店| 百家乐官网影院| 贵族百家乐的玩法技巧和规则| 青鹏棋牌游戏大厅v3.0|