那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

SiC主驅逆變器讓電動汽車延長5%里程的秘訣

安森美 ? 來源:未知 ? 2023-10-19 11:05 ? 次閱讀

本文作者:安森美汽車主驅解決方案高級產品線經理 Jonathan Liao

不斷增長的消費需求、持續提高的環保意識/環境法規約束,以及越來越豐富的可選方案,都在推動著人們選用電動汽車 (EV),令電動汽車日益普及。高盛近期的一項研究顯示,到 2023 年,電動汽車銷量將占全球汽車銷量的 10%;到 2030 年,預計將增長至 30%;到 2035 年,電動汽車銷量將有可能占全球汽車銷量的一半。然而,“里程焦慮”,也就是擔心充一次電后行駛里程不夠長,則是影響電動汽車普及的主要障礙之一。克服這一問題的關鍵是在不顯著增加成本的情況下延長車輛行駛里程。本文闡述了如何在主驅逆變器中使用碳化硅 (SiC) 金屬氧化物半導體場效應晶體管 (MOSFET) 將電動汽車的續航里程延長多達 5%。另外,文中還討論了為什么一些原始設備制造商 (OEM) 不愿意從硅基絕緣柵雙極晶體管 (IGBT) 過渡到 SiC 器件,以及安森美 (onsemi) 為緩解 OEM 的擔憂同時提升 OEM 對這種成熟的寬禁帶半導體技術的信心所做的努力。

01

汽車主驅逆變器設計趨勢

電動汽車中的主驅(主)逆變器將直流電池電壓轉換為交流電壓,從而滿足電動牽引電機對交流電壓的需求,令其能夠順利驅動車輛。主驅逆變器設計的最新趨勢包括:

  • 增加功率:逆變器的功率輸出越大,車輛加速越快,對駕駛員的響應也越快。

  • 效率最大化:最大限度地減少逆變器消耗的電量,以增加用來驅動車輛的功率。

  • 提高電壓:直到最近,400V 電池一直都是電動汽車中最常見的規格,但汽車行業正在向 800V 發展,以減小電流、電纜厚度和重量。為此,電動汽車中的主驅逆變器必須能夠處理這種更高的電壓并使用合適的組件。

  • 減輕重量和尺寸:與硅基 IGBT 相比,SiC 具有更高的功率密度 (kW/kg)。更高的功率密度有助于減小系統尺寸(kW/L),減輕主驅逆變器的重量,同時減少電機的負載。車輛重量降低有助于在使用相同電池的情況下延長車輛的行駛里程,同時減小傳動系統的體積,增加乘員和后備箱的可用空間。

圖 1:電動汽車主驅逆變器設計的最新趨勢

02

SiC 相對于硅的優勢

與硅相比,碳化硅在材料特性方面具有多種優勢,因而成為主驅逆變器設計的更優選擇。首先是它的物理硬度,達到了 9.5 莫氏硬度,而硅為 6.5 莫氏硬度,所以碳化硅更適合高壓燒結并具有更高的機械完整性。再者,碳化硅的熱導率 (4.9W/cm.K) 是硅 (1.15 W/cm.K) 的四倍多,這意味著它可以更有效地傳遞熱量從而在更高溫度下可靠運行。最后,碳化硅的擊穿電壓(2500kV/cm)是硅(300kV/cm)的 8 倍多,而且它具有寬帶隙性質,能夠更快地導通和關斷,因而成為電動汽車日益升高的電壓 (800V) 架構的更優選擇,同時更寬的帶隙電壓意味著它的損耗比硅更低。

03

消解廠商對于采用 SiC 的顧慮

盡管 SiC 具有明顯的優勢,但一些汽車 OEM 廠商還是遲遲不肯放棄更傳統的硅基開關器件,例如用于主驅逆變器的 IGBT。OEM 廠商不愿采用 SiC 的原因包括:

  • 認為 SiC 是一種尚未成熟的技術

  • 覺得 SiC 難以實施

  • 以為 SiC 沒有適合主驅應用的封裝

  • 認為 SiC 的供應不如硅基器件便利

  • 覺得 SiC 比 IGBT 更貴


下文將從多個角度說明為什么上述看法缺少根據,以及為什么 OEM 應該有信心在電動汽車主驅逆變器中使用 SiC。

04

證明 SiC 可提高主驅逆變器效率

提升 OEM 信心的第一步是展示在主驅逆變器設計中使用 SiC 可實現的明顯性能優勢。我們使用電路設計軟件對安森美的NVXR17S90M2SPB(1.7mΩ Rdson)和 NVXR22S90M2SPB(2.2mΩ Rdson) EliteSiC Power 900 V 六組功率模塊進行了仿真,并將其性能與 820 A VE-Trac Direct IGBT(同樣來自安森美)進行了比較。主驅逆變器設計的仿真結果表明:

  • 對于 10KHz 開關頻率下 450V 直流母線電壓和 550Arms 功率傳輸,在相同散熱條件下,SiC 模塊的 Tvj(結溫)(111°C) 比 IGBT (142°C) 低 21%。

  • 與 IGBT 相比,NVXR17S90M2SPB 的平均開關損耗降低了 34.5%,NVXR22S90M2SPB 的平均開關損耗則降低了 16.3%。

  • 與基于 IGBT 的設計相比,使用 NVXR17S90M2SPB 實施的全主驅逆變器設計的總體損耗降低了 40% 以上,使用 NVXR22S90M2SPB 時功率損耗則降低了 25%。


雖然這些改進針對的是主驅逆變器,但它們可以使電動汽車整體能效提高 5%,從而使續航里程延長 5%。例如,配備 100kW 電池、續航里程為 500 公里的電動汽車,如果使用基于安森美 EliteSiC 功率模塊的主驅逆變器,那么它的行駛里程則可達 525 公里。值得注意的是,在此類主驅逆變器中使用 SiC 的成本也將比硅 IGBT 低 5%。

05

更高的功率傳輸

對于考慮放棄 IGBT 的 OEM 而言,安森美提供了具有類似尺寸的 SiC 模塊,不但便于集成,而且還簡化了實施過程,無需對制造流程進行任何更改。此外,SiC 模塊還具有在相同結溫下提供更高功率的額外優勢。例如,NVXR17S90M2SPB 可提供 760Arms,而 IGBT (Tvj =150°C) 只能提供 590Arms,前者比后者增加了 29% 的功率。此外,安森美將 SiC 芯片燒結在直接鍵合銅板上,使器件結點和冷卻劑之間的熱阻降低多達 20%(Rth 結點到流體 = 0.08oC/W)。


圖 2:安森美的 SiC 封裝具有出色的低熱阻


采用先進互連技術的壓鑄模封裝進一步提高了 SiC 模塊的高功率密度,并且具有低雜散電感(對于高速開關效率非常重要),而且更高的開關頻率有助于減小系統中一些無源組件的尺寸和重量。此外,這種封裝類型具有多種工作溫度選項(最高達 200°C),可降低 OEM 的散熱要求,并有望采用更小的泵進行熱管理。

06

在更廣泛的架構中改用 SiC

隨著電動汽車電池電壓的增加,我們可以在維持相同功率輸出的情況下減小電流。從系統層面而言,這意味著汽車中的電纜將變得更細。轉向 SiC 將變得越來越合理,因為 SiC 器件產生的熱量比硅基器件更少,可實現更高的功率密度,不僅是在主驅逆變器中,而且在更廣泛的電動汽車架構中也能發揮巨大作用。

07

安森美消除 OEM 對于 SiC 供應的擔憂

安森美投入巨資打造全整合且成熟的 SiC 供應鏈和生態系統,包括晶圓外延和 150mm 制造(計劃向200mm發展),涉及分立產品、集成電路器件、模塊和參考應用設計。經過十多年的發展,安森美積累了深厚的專業知識,可以幫助汽車 OEM 廠商消除對于轉用 SiC 的各種擔憂。


點個星標,茫茫人海也能一眼看到我

點贊、在看,記得兩連~」


原文標題:SiC主驅逆變器讓電動汽車延長5%里程的秘訣

文章出處:【微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 安森美
    +關注

    關注

    32

    文章

    1704

    瀏覽量

    92158

原文標題:SiC主驅逆變器讓電動汽車延長5%里程的秘訣

文章出處:【微信號:onsemi-china,微信公眾號:安森美】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    電動汽車SiC演變和GaN革命

    電子發燒友網站提供《電動汽車SiC演變和GaN革命.pdf》資料免費下載
    發表于 01-24 14:03 ?0次下載
    <b class='flag-5'>電動汽車</b>的<b class='flag-5'>SiC</b>演變和GaN革命

    電動汽車驅動系統的控制器硬件架構

    前段時間有星友咨詢,想了解電動汽車驅動系統的控制器(逆變器)硬件架構,今天我們借助Infineon逆變器的硬件架構說明下這個問題。
    的頭像 發表于 01-10 17:09 ?227次閱讀
    <b class='flag-5'>電動汽車</b>驅動系統的控制器硬件架構

    SiC解決方案:硅陽極能否增加電動汽車的續航里程

    電動汽車制造商正在尋求替代鋰離子電池的方案,以滿足對功率、續航里程和安全性日益增長的需求。相比于鋰離子電池,磷酸鐵鋰(LFP)電池在續航和安全性方面表現更佳,且其商業化進程正在逐步推進
    的頭像 發表于 12-27 11:21 ?275次閱讀
    <b class='flag-5'>SiC</b>解決方案:硅陽極能否增加<b class='flag-5'>電動汽車</b>的續航<b class='flag-5'>里程</b>

    三菱電機提供SiC MOSFET裸片樣品

    近日,三菱電機集團宣布,將于11月14日開始提供用于電動汽車(EV)、插電式混合動力汽車(PHEV)和其他電動汽車(xEV)電逆變器的碳化
    的頭像 發表于 11-14 14:43 ?917次閱讀

    無線充電技術:電動汽車未來的里程焦慮解藥

    本,并有望延長電動汽車的行駛里程,從而減輕頻繁充電的需求。近年來,這項技術已經取得了顯著的進展,多個試點項目正在全球范圍內展開。
    的頭像 發表于 10-24 14:22 ?915次閱讀

    NXP公司電動汽車牽引逆變器解決方案

    隨著電動汽車在能耗方面越來越卷,電動汽車驅動逆變器電動汽車動力系統中的效率越來越重要。逆變器的效率直接影響到車輛的續航
    的頭像 發表于 10-22 16:21 ?558次閱讀
    NXP公司<b class='flag-5'>電動汽車</b>牽引<b class='flag-5'>逆變器</b>解決方案

    SiC MOSFET在電動汽車中的應用問題

    電動汽車中可能用到SiC MOSFET的主要汽車電子零部件包括車載充電機、車載DCDC變換器以及逆變
    的頭像 發表于 09-29 14:28 ?331次閱讀
    <b class='flag-5'>SiC</b> MOSFET在<b class='flag-5'>電動汽車</b>中的應用問題

    恩智浦和采埃孚合作開發基于SiC電動汽車牽引逆變器解決方案

    恩智浦半導體宣布與電動汽車領域領先企業采埃孚股份公司(ZF Friedrichshafen AG)合作下一代基于SiC電動汽車(EV)牽引逆變器解決方案。解決方案采用恩智浦先進的GD
    的頭像 發表于 08-27 09:48 ?1364次閱讀

    示波器探頭在電動汽車EV的逆變器測試中的應用

    電動汽車(EV)的逆變器測試中,示波器探頭扮演著至關重要的角色。逆變器電動汽車動力系統的核心,負責將電池的直流電轉換為驅動電機的交流電。為了確保
    的頭像 發表于 06-21 10:26 ?456次閱讀

    電動汽車牽引變頻器應用中,磁傳感器TLE5309D能否取代旋轉變壓器?

    我的客戶開發了基于 hybridepack 1200V SiC 板的牽引逆變器。 您有哪些支持需求? 1.在電動汽車牽引變頻器應用中,磁傳感器 TLE5309D 能否取代旋轉變壓器? 什么樣的位置
    發表于 05-31 08:04

    光儲系統高壓化升級,2000V SiC MOSFET開始走進市場

    電子發燒友網報道(文/梁浩斌)功率SiC器件目前最大的應用市場是電動汽車。在汽車應用中,電動汽車的母線電壓普遍在400V左右,因此在
    的頭像 發表于 05-09 00:15 ?5039次閱讀

    英飛凌逆變器助力電動汽車跑得快跑得遠

    電動汽車越來越受歡迎。如今電動汽車的發展趨勢是,電機功率越來越大,但為了保證續航里程,行駛中的電耗也要越來越低。這看似不可能完成的任務,背后的最大功臣正是
    的頭像 發表于 04-05 13:46 ?634次閱讀
    英飛凌<b class='flag-5'>主</b><b class='flag-5'>驅</b><b class='flag-5'>逆變器</b>助力<b class='flag-5'>電動汽車</b>跑得快跑得遠

    SiC器件如何提升電動汽車的系統效率

    SiC器件可以提高電動汽車的充電模塊性能,包括提高頻率、降低損耗、縮小體積以及提升效率等。這有助于提升電動汽車的整體性能表現。
    的頭像 發表于 03-18 18:12 ?1649次閱讀
    <b class='flag-5'>SiC</b>器件如何提升<b class='flag-5'>電動汽車</b>的系統效率

    新能源汽車需要怎樣的逆變器汽車廠商又如何選擇合適的方案?

    隨著新能源汽車的發展,其關鍵部件逆變器的重要性越來越高。市場對
    的頭像 發表于 03-15 14:35 ?2220次閱讀
    新能源<b class='flag-5'>汽車</b>需要怎樣的<b class='flag-5'>主</b><b class='flag-5'>驅</b><b class='flag-5'>逆變器</b>?<b class='flag-5'>汽車</b>廠商又如何選擇合適的<b class='flag-5'>主</b><b class='flag-5'>驅</b>方案?

    基于碳化硅(SiC)材料打造的逆變器即將大規模“上車”

    在當今全球汽車工業駛向電動化的滾滾浪潮中,一項關鍵技術正以其顛覆性的性能改變著電動汽車整體市場競爭力的新格局,它便是基于碳化硅(SiC)材料打造的
    的頭像 發表于 03-13 09:44 ?1758次閱讀
    基于碳化硅(<b class='flag-5'>SiC</b>)材料打造的<b class='flag-5'>主</b><b class='flag-5'>驅</b><b class='flag-5'>逆變器</b>即將大規模“上車”
    网上百家乐官网投注技巧| 大发888娱乐城官网下载| 百家乐对冲套红利| 百家乐赌博代理| 皇家百家乐的玩法技巧和规则| 百家乐打鱼秘| 360棋牌游戏大厅| 金龙博彩| 真人百家乐官网导航| 希尔顿百家乐官网娱乐城| 百家乐现金网平台排名| 网上百家乐游戏哪家信誉度最好| 真人百家乐游戏网址| 大发888婚庆车队| 乡城县| 百家乐官网软件代理| 百家乐闲和庄| 波克棋牌官方免费下载| 威尼斯人娱乐场有什么玩| 财神娱乐城| 高档百家乐官网桌子| 百家乐方法技巧| 大发888检测技能| 来博百家乐官网现金网| 先锋百家乐官网的玩法技巧和规则| 太阳城百家乐公司| 大赢家娱乐城怎么样| 澳门百家乐官网有哪些| 网上赌百家乐被抓应该怎么处理| 大发888官网免费下载| 现场百家乐官网百家乐官网| 免费百家乐奥秘| 大发888体育博彩| 网上百家乐官网如何打水| 冠军百家乐现金网| 大发888游戏客服电话| 百家乐官网注码投注论坛| 赌博百家乐技术| 缅甸百家乐| 免邮百家乐官网布桌| 威尼斯人娱乐平台赌|