那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

麻省理工研發(fā)新神經(jīng)網(wǎng)絡(luò)芯片,速度提升6倍,功耗減少94%!

cMdW_icsmart ? 來源:未知 ? 作者:李建兵 ? 2018-03-15 16:47 ? 次閱讀

北京時(shí)間2月28日下午消息,據(jù)MIT News報(bào)道,麻省理工學(xué)院(MIT)的研究人員開發(fā)出了一種可用于神經(jīng)網(wǎng)絡(luò)計(jì)算的高性能芯片,該芯片的處理速度可達(dá)其他處理器的7倍之多,而所需的功耗卻比其他芯片少94-95%,未來這種芯片將有可能被使用在運(yùn)行神經(jīng)網(wǎng)絡(luò)的移動(dòng)設(shè)備或是物聯(lián)網(wǎng)設(shè)備上。

MIT電子工程與計(jì)算科學(xué)研究生阿維謝克·碧斯沃斯(Avishek Biswas)是這個(gè)項(xiàng)目開發(fā)的領(lǐng)導(dǎo)者,他表示:“總體來說一般的處理器的運(yùn)行模式是這樣的,在芯片的一些部分里安放了內(nèi)存,在進(jìn)行計(jì)算的時(shí)候,它會(huì)在這些內(nèi)存中來回移動(dòng)數(shù)據(jù)。由于機(jī)器學(xué)習(xí)算法需要大量的算力,因此在來回移動(dòng)數(shù)據(jù)的時(shí)候會(huì)消耗大量的能源。但是其實(shí)這些算法所做的計(jì)算可以被簡(jiǎn)化成一個(gè)種具體的操作,這種操作被稱為點(diǎn)積(dot product)。我們的想法是,我們是否可以將這個(gè)點(diǎn)積功能部署在內(nèi)存中,從而無需在不斷的移動(dòng)這些數(shù)據(jù)?”

這個(gè)芯片會(huì)將結(jié)點(diǎn)的輸入值轉(zhuǎn)化為電壓,然后在進(jìn)行儲(chǔ)存和進(jìn)一步處理的時(shí)候,再將其轉(zhuǎn)換為數(shù)字形式。這種做法讓這塊芯片能夠在一個(gè)步驟中同時(shí)對(duì)16個(gè)結(jié)點(diǎn)的點(diǎn)積進(jìn)行計(jì)算,而且無需在內(nèi)存和處理器之間移動(dòng)數(shù)據(jù)。MIT News認(rèn)為這種處理方法更加接近于人類大腦的工作方式。

碧斯沃斯將會(huì)在一篇論文中詳細(xì)闡述這塊芯片的工作方式,這篇論文將會(huì)在國(guó)際固態(tài)電路大會(huì)期間發(fā)表,和他一起撰寫論文的還有他的論文指導(dǎo)老師,MIT工程學(xué)院院長(zhǎng)阿南莎·錢德拉卡珊(Anantha Chandrakasan)以及MIT電子工程與計(jì)算機(jī)科學(xué)教授范內(nèi)瓦·布什(Vannevar Bush)。

去年12月,SensibleVision公司CEO喬治·布羅斯托夫(George Brostoff)在曾經(jīng)在《生物學(xué)更新(Biometric Update)》發(fā)表了一篇客座文章,證明了定制化處理器有可能會(huì)給移動(dòng)設(shè)備的安全識(shí)別功能帶來巨大的變革。那以后,F(xiàn)WDNXT也宣布他們將會(huì)開發(fā)使用深度神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像識(shí)別與歸類的低功耗處理器,此外ARM也宣布將會(huì)開發(fā)用于機(jī)器學(xué)習(xí)和物體識(shí)別的芯片。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 芯片
    +關(guān)注

    關(guān)注

    456

    文章

    51170

    瀏覽量

    427227
  • 設(shè)備
    +關(guān)注

    關(guān)注

    2

    文章

    4543

    瀏覽量

    70852

原文標(biāo)題:麻省理工研發(fā)新神經(jīng)網(wǎng)絡(luò)芯片:速度提升6倍,功耗減少94%!

文章出處:【微信號(hào):icsmart,微信公眾號(hào):芯智訊】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法

    在上一篇文章中,我們介紹了傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法。在本文中,我們會(huì)介紹人工神經(jīng)網(wǎng)絡(luò)的原理和多種神經(jīng)網(wǎng)絡(luò)架構(gòu)方法,供各位老師選擇。 01 人工神經(jīng)網(wǎng)絡(luò) ? 人工神經(jīng)網(wǎng)絡(luò)模型之所
    的頭像 發(fā)表于 01-09 10:24 ?351次閱讀
    人工<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的原理和多種<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>架構(gòu)方法

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1733次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個(gè)方面,詳細(xì)闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1303次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?654次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡(jiǎn)稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡(jiǎn)稱RNN)實(shí)際上是同一個(gè)概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?873次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1502次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指?jìng)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需要從多個(gè)維度進(jìn)行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?1059次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)芯片的介紹

    人工智能神經(jīng)網(wǎng)絡(luò)芯片是一類專門為深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)算法設(shè)計(jì)的處理器。它們具有高性能、低功耗、可擴(kuò)展等特點(diǎn),廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。以下是關(guān)于人工智能
    的頭像 發(fā)表于 07-04 09:33 ?915次閱讀

    神經(jīng)網(wǎng)絡(luò)芯片與傳統(tǒng)芯片的區(qū)別和聯(lián)系

    引言 隨著人工智能技術(shù)的快速發(fā)展,深度學(xué)習(xí)算法在圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域取得了顯著的成果。然而,深度學(xué)習(xí)算法對(duì)計(jì)算資源的需求非常高,傳統(tǒng)的計(jì)算芯片已經(jīng)無法滿足其需求。因此,神經(jīng)網(wǎng)絡(luò)芯片
    的頭像 發(fā)表于 07-04 09:31 ?1115次閱讀

    神經(jīng)網(wǎng)絡(luò)芯片和普通芯片區(qū)別

    神經(jīng)網(wǎng)絡(luò)芯片和普通芯片的區(qū)別是一個(gè)復(fù)雜而深入的話題,涉及到計(jì)算機(jī)科學(xué)、電子工程、人工智能等多個(gè)領(lǐng)域。 定義 神經(jīng)網(wǎng)絡(luò)芯片(Neural Ne
    的頭像 發(fā)表于 07-04 09:30 ?1364次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡(jiǎn)稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達(dá)到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?867次閱讀

    bp神經(jīng)網(wǎng)絡(luò)是深度神經(jīng)網(wǎng)絡(luò)

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)是一種常見的前饋神經(jīng)網(wǎng)絡(luò),它使用反向傳播算法來訓(xùn)練網(wǎng)絡(luò)。雖然BP神經(jīng)網(wǎng)絡(luò)在某些方面與深度
    的頭像 發(fā)表于 07-03 10:14 ?947次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們?cè)?/div>
    的頭像 發(fā)表于 07-03 10:12 ?1357次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡(jiǎn)稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4711次閱讀

    麻省理工與Adobe新技術(shù)DMD提升圖像生成速度

    2023年3月27日,據(jù)傳,新型文生圖算法雖然使得圖像生成無比逼真,但奈何運(yùn)行速度較慢。近期,美國(guó)麻省理工學(xué)院聯(lián)合Adobe推出新型DMD方法,僅略微犧牲圖像質(zhì)量就大幅度提高圖像生成效率。
    的頭像 發(fā)表于 03-27 14:17 ?571次閱讀
    金都娱乐城真人娱乐| 做生意店门口有个马葫芦盖风水| 同乐城百家乐娱乐城| 澳门百家乐官网信誉| 全讯网网址| 百家乐官网娱乐场真人娱乐场| 现金百家乐破解| 百家乐官网闲庄概率| 百家乐官方游戏下载| 百家乐官网2号机器投注技巧| 百家乐筹码皇冠| 回力百家乐官网的玩法技巧和规则 | 赌场百家乐官网破解| 大发888娱乐城赢钱| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 威尼斯人娱乐城注册送彩金| 破解百家乐官网公式| 赌球网站排名| 太阳百家乐官网网| 百家乐官网拍是什么| 真人百家乐最高赌注| CEO百家乐官网的玩法技巧和规则 喜达百家乐官网的玩法技巧和规则 | 电子百家乐官网打法| 大发888娱乐城登陆| 百家乐教父方法| 百家乐官网千术道具| 足球百家乐系统| 真人百家乐信誉| 百家乐官网有破解的吗| 威尼斯人娱乐城信誉怎么样| 百家乐官网正网| 百乐门线上娱乐城| 网上百家乐真的假| 专业的百家乐官网玩家| 足球改单平| 金世豪百家乐的玩法技巧和规则 | 百家乐官网任你博娱乐场| 延长县| 大发888英皇国际| 澳门百家乐登陆网址| 百家乐官网龙虎台布价格|