那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如果未來的計(jì)算界面都采用語音控制,那些失聰或失語者該怎么辦?

Tensorflowers ? 來源:未知 ? 作者:胡薇 ? 2018-09-03 14:30 ? 次閱讀

我不知道為什么會(huì)有這樣的想法,我自己既不失聰,也不失語,而且周圍也沒有這樣的人,我甚至連語音助手也沒有。究其原因,或許是因?yàn)橛泻芏辔恼露荚诮榻B層出不窮的語音助手,也可能是因?yàn)楦鞔蠊径荚跔?zhēng)相成為您青睞的智能家居語音助手,又或許只是因?yàn)槲以絹碓蕉嗟卦谂笥鸭抑械淖琅_(tái)上看到這些設(shè)備。這個(gè)問題在我的腦海中一直縈繞不去,我知道這件事勢(shì)在必行。

于是,最后有了這個(gè)項(xiàng)目。這是一個(gè)概念驗(yàn)證項(xiàng)目,我買了一個(gè)Amazon Echo,讓它對(duì)手語作出反應(yīng),更準(zhǔn)確地說是美國(guó)手語 (ASL),因?yàn)楹涂谡Z一樣,手語的種類也有很多。

原本我可以只發(fā)布代碼,不過,我覺得很多機(jī)器學(xué)習(xí)項(xiàng)目都缺少視覺元素,讓人們很難將它們聯(lián)系起來理解,所以后來還是決定發(fā)布一段關(guān)于系統(tǒng)演示的視頻。同時(shí),我也希望這個(gè)方法能夠?qū)⑷藗冴P(guān)注的焦點(diǎn)從項(xiàng)目的科技元素轉(zhuǎn)向人類元素,即這里介紹的并非底層技術(shù),而是此類技術(shù)賦予我們?nèi)祟惖哪芰Α?/p>

既然視頻已經(jīng)公開,下面就通過這篇博文介紹一下底層技術(shù),以及如何使用TensorFlow.js構(gòu)建這一系統(tǒng)。您也可以播放實(shí)時(shí)演示。我將其整合在了一起,以便您可以使用自己的詞集和符號(hào)/手勢(shì)組合來訓(xùn)練。是否要在身邊準(zhǔn)備一個(gè)可以響應(yīng)您要求的 Echo,完全由您自選。

早期研究

在早期,我就非常明確我想要為此實(shí)驗(yàn)整合哪些更廣泛的系統(tǒng)組成部分。我需要的組件如下:

一個(gè)神經(jīng)網(wǎng)絡(luò),用以解釋手勢(shì)(即將手勢(shì)視頻轉(zhuǎn)換為文本)。

一個(gè)文字轉(zhuǎn)語音系統(tǒng),用于將解釋過的手勢(shì)講給 Alexa

一個(gè)語音轉(zhuǎn)文字系統(tǒng),用于將 Alexa 的回應(yīng)轉(zhuǎn)錄給用戶使用

一臺(tái)運(yùn)行該系統(tǒng)的設(shè)備(筆記本電腦/平板電腦)和用于互動(dòng)的 Echo

可以將這些組件整合在一起的界面

早期,我的大部分時(shí)間可能都用在了確定哪個(gè)神經(jīng)網(wǎng)絡(luò)架構(gòu)最適合此實(shí)驗(yàn)上面。我想到下面幾個(gè)選擇:

1) 由于手勢(shì)兼具可視性和時(shí)效性,因此我的直覺是將 CNN 與 RNN 結(jié)合在一起,其中最后一個(gè)卷積層的輸出(分類前)作為序列饋送到 RNN 中。后來,我為此找到一個(gè)技術(shù)術(shù)語,即長(zhǎng)期遞歸卷積網(wǎng)絡(luò) (LRCN)。

2) 使用 3D 卷積網(wǎng)絡(luò),以三維方式應(yīng)用卷積,其中前兩個(gè)維度是圖像,第三個(gè)維度是時(shí)間。但是,這些網(wǎng)絡(luò)需要大量存儲(chǔ)設(shè)備,而我希望可以在我用了 7 年的老 Macbook Pro 上進(jìn)行訓(xùn)練。

3) 訓(xùn)練 CNN 時(shí),我沒有使用視頻流中的單個(gè)幀,而是只用了可以表示兩個(gè)連續(xù)幀之間視運(yùn)動(dòng)模式的光流表征。我的想法是它會(huì)對(duì)這種動(dòng)作進(jìn)行編碼,產(chǎn)生更通用的手語模型。

4) 使用雙流 CNN,其中空間流為單個(gè)幀 (RGB),時(shí)間流會(huì)使用光流表征。

在做進(jìn)一步研究時(shí),我發(fā)現(xiàn)了一些論文,其中至少使用了上述部分視頻行為識(shí)別方法(在UFC101 數(shù)據(jù)集上最常見)。但我很快發(fā)現(xiàn),不僅我的計(jì)算能力有限,我從頭開始解密和實(shí)施這些論文的能力也很有限,之后幾個(gè)月,我的研究時(shí)斷時(shí)續(xù),經(jīng)常因?yàn)槠渌?xiàng)目纏身而不得不丟下該項(xiàng)目,我的輸出結(jié)果一直乏善可陳。

最終,我采用了迥異的方法。

輸入 TensorFlow.js:

TensorFlow.js團(tuán)隊(duì)一直在推出基于瀏覽器的有趣小實(shí)驗(yàn),幫助人們熟悉機(jī)器學(xué)習(xí)的概念,同時(shí)也鼓勵(lì)人們用它來構(gòu)建自己的項(xiàng)目。對(duì)于那些不熟悉機(jī)器學(xué)習(xí)的人,TensorFlow.js 是一個(gè)開放源代碼庫,讓您可以直接在使用 Javascript 的瀏覽器中定義、訓(xùn)練和運(yùn)行機(jī)器學(xué)習(xí)模型。特別值得一提的是,Pacman 網(wǎng)絡(luò)攝像頭控制器和Teachable Machine這兩個(gè)演示似乎是很有趣的起點(diǎn)。

雖然這兩個(gè)演示都是從網(wǎng)絡(luò)攝像頭選取輸入圖像,并輸出基于訓(xùn)練數(shù)據(jù)的預(yù)測(cè),但其內(nèi)部運(yùn)作卻各不相同:

1) Pacman 網(wǎng)絡(luò)攝像頭 — 使用卷積神經(jīng)網(wǎng)絡(luò)選取輸入圖像(來自網(wǎng)絡(luò)攝像頭)并通過一系列卷積和最大池化層來傳遞圖像。通過這種方式,它能提取圖像的主要特征,并根據(jù)其訓(xùn)練時(shí)用過的示例預(yù)測(cè)其標(biāo)簽。由于訓(xùn)練過程費(fèi)時(shí)費(fèi)力,它使用了名為 MobileNet 的預(yù)訓(xùn)練模型進(jìn)行遷移學(xué)習(xí)。該模型經(jīng)受過基于 ImageNet 數(shù)據(jù)集的訓(xùn)練,可以區(qū)分 1000 種圖像,而且經(jīng)過優(yōu)化,可以在瀏覽器和移動(dòng)應(yīng)用中運(yùn)行。

2) Teachable Machine — 使用 kNN(最鄰近規(guī)則分類),該分類非常簡(jiǎn)單,以至于從技術(shù)上說其完全不執(zhí)行任何“學(xué)習(xí)”。它會(huì)接收輸入圖像(來自網(wǎng)絡(luò)攝像頭),并使用相似度函數(shù)或距離度量來尋找最接近該輸入圖像的訓(xùn)練示例的標(biāo)簽,從而對(duì)圖像進(jìn)行分類。然而,在饋送 kNN 之前,首先要通過名為 SqueezeNet 的小型神經(jīng)網(wǎng)絡(luò)傳送該圖像。然后,將該網(wǎng)絡(luò)倒數(shù)第二個(gè)層的輸出饋送到 kNN 中,該 kNN 允許您訓(xùn)練自己的分類。相較將來自網(wǎng)絡(luò)攝像頭的原始像素值直接饋送到 kNN 中,這樣做的好處在于我們可以使用 SqueezeNet 已經(jīng)學(xué)過的高層抽象,由此訓(xùn)練更好的分類器。

現(xiàn)在您可能想知道,手勢(shì)的時(shí)效性怎么辦?這兩個(gè)系統(tǒng)都是每幀選取一個(gè)輸入圖像,并且在預(yù)測(cè)時(shí)完全不考慮面前的這些幀。這不是考查 RNN 時(shí)關(guān)注的整個(gè)要點(diǎn)嗎?這對(duì)真正理解手勢(shì)并非必要?利用在線資源學(xué)習(xí)本項(xiàng)目的 ASL 時(shí),我發(fā)現(xiàn),當(dāng)做出手勢(shì)時(shí),不同手勢(shì)之間手的始末姿勢(shì)以及位置差別很大。與人交流時(shí),其間發(fā)生的一切或許都很必要,但對(duì)機(jī)器而言,只使用始末姿勢(shì)就足夠了。因此,我決定棄常規(guī)作法而不用,無視過程,直奔目的。

事實(shí)證明,使用 TensorFlow.js 非常有用,其間原因包括:

我可以利用這些演示進(jìn)行原型設(shè)計(jì),而無需編寫任何代碼。最初開始原型設(shè)計(jì)時(shí),我只是在瀏覽器中運(yùn)行這些原始示例,用我計(jì)劃使用的手勢(shì)進(jìn)行訓(xùn)練,然后觀察系統(tǒng)的運(yùn)行方式,即便其輸出結(jié)果意味著是 Pacman 在屏幕上移動(dòng)。

我可以使用 TensorFlow.js 在瀏覽器中直接運(yùn)行模型。從可移植性、開發(fā)速度和與網(wǎng)頁界面輕松交互的能力來看,這是巨大的。這些模型也可以完全在瀏覽器中運(yùn)行,而無需向服務(wù)器發(fā)送數(shù)據(jù)。

因?yàn)槟P驮跒g覽器中運(yùn)行,我可以將其與現(xiàn)代瀏覽器支持且我需要使用的語音轉(zhuǎn)文字和文字轉(zhuǎn)語音 API 連接起來。

它可以加速測(cè)試、訓(xùn)練和微調(diào)操作,而這往往是機(jī)器學(xué)習(xí)中的一大難題。

由于我沒有手語數(shù)據(jù)集,并且訓(xùn)練示例基本是我在重復(fù)做出手語動(dòng)作,因此使用網(wǎng)絡(luò)攝像頭來收集訓(xùn)練數(shù)據(jù)非常方便。

在全面測(cè)試這兩種方法后,我發(fā)現(xiàn)這兩個(gè)系統(tǒng)在測(cè)試中表現(xiàn)相當(dāng),于是決定使用 Teachable Machine 作為訓(xùn)練基礎(chǔ),這是因?yàn)椋?/p>

如果使用較小的數(shù)據(jù)集,kNN 實(shí)際要比 CNN 運(yùn)行地更快/更好。在用很多示例訓(xùn)練時(shí),它們需要存儲(chǔ)大量數(shù)據(jù),性能也會(huì)下降,但我知道我的數(shù)據(jù)集不大,所以這不是問題。

由于 kNN 實(shí)際并非從示例中學(xué)習(xí),所以它們不擅長(zhǎng)泛化。因此,使用完全由一個(gè)人構(gòu)成的示例訓(xùn)練模型,其預(yù)測(cè)結(jié)果并不能很好地遷移至另一個(gè)人。但對(duì)我而言,這也不是問題,因?yàn)槲視?huì)通過自己反復(fù)做出手勢(shì)來訓(xùn)練并測(cè)試模型。

該團(tuán)隊(duì)曾經(jīng)開放過一個(gè)很好的項(xiàng)目剝離樣板文件的源代碼,可以作為一個(gè)非常有用的起點(diǎn)。

工作原理

下面我們從較高層面了解一下系統(tǒng)由始至終的運(yùn)作方式:

在瀏覽器中打開網(wǎng)站后,第一步是提供訓(xùn)練示例。也就是,使用網(wǎng)絡(luò)攝像頭反復(fù)捕捉您自己做出每個(gè)手勢(shì)時(shí)的動(dòng)作。這樣操作相對(duì)較快,因?yàn)橹灰聪绿囟ǖ呐恼瞻粹o就可以持續(xù)捕獲幀,直到您松開按鈕并使用合適的標(biāo)簽標(biāo)記捕獲的圖像。我訓(xùn)練的這個(gè)系統(tǒng)包含 14 個(gè)詞匯,我可以將這些詞匯進(jìn)行多種組合,用來向 Alexa 發(fā)出不同請(qǐng)求。

訓(xùn)練完成后,輸入預(yù)測(cè)模式。現(xiàn)在,系統(tǒng)會(huì)使用來自網(wǎng)絡(luò)攝像頭的輸入圖像并通過分類器運(yùn)行,根據(jù)上一步中提供的訓(xùn)練示例和標(biāo)簽找到與其最鄰近的類別。

如果超過了某個(gè)預(yù)測(cè)閾值,它會(huì)在屏幕的左側(cè)附上標(biāo)簽。

然后我使用語音合成的 Web Speech API 來讀出檢測(cè)到的標(biāo)簽。

如果說出的單詞是“Alexa”,則會(huì)喚醒附近的 Echo,并且 Echo 會(huì)開始聆聽查詢。另外值得注意的是,我創(chuàng)建了一個(gè)任意手勢(shì)(在空中舉起右拳)來表示單詞 Alexa,因?yàn)?ASL 中不存在與這個(gè)詞對(duì)應(yīng)的手勢(shì),并且反復(fù)拼寫 A-L-E-X-A 也會(huì)讓人厭煩。

在完成整個(gè)手勢(shì)短語后,我再次使用 Web Speech API 來轉(zhuǎn)錄Echo 的反應(yīng),Echo 在回應(yīng)這個(gè)查詢時(shí)完全不知道該查詢來自另一臺(tái)機(jī)器。轉(zhuǎn)錄的反應(yīng)顯示在屏幕的右側(cè),以供用戶閱讀。

再次用手勢(shì)表示喚醒詞,清除屏幕并重啟反復(fù)查詢的流程。我已將全部代碼上傳至 Github,包括實(shí)時(shí)演示。您可以按照您的想法隨意使用并修改代碼。

雖然系統(tǒng)運(yùn)行較好,但的確需要一些簡(jiǎn)單改動(dòng)來幫助獲取所需結(jié)果并提高準(zhǔn)確度,例如:

確保在說出喚醒詞 Alexa 之前不會(huì)檢測(cè)到任何手勢(shì)。

在訓(xùn)練示例中添加一個(gè)完整的泛類,我將其歸為適用于空閑狀態(tài)的“其他”類(空白背景、我站在一旁不做任何動(dòng)作,手放在身體兩邊等)。這可以防止錯(cuò)誤檢測(cè)詞匯。

在接收輸出前設(shè)定高閾值,以減少預(yù)測(cè)錯(cuò)誤。

降低預(yù)測(cè)率。不要按最大幀率進(jìn)行預(yù)測(cè),控制每秒的預(yù)測(cè)數(shù)量有助于減少預(yù)測(cè)錯(cuò)誤。

確保預(yù)測(cè)時(shí)不會(huì)重復(fù)考慮短語中已經(jīng)檢測(cè)過的詞匯。

在手語中,冠詞通常不用手勢(shì)表達(dá),而是依靠上下文來表達(dá)意思,因此,我在訓(xùn)練模型時(shí)用了某些包含相應(yīng)冠詞或介詞的詞匯,例如這天氣、這清單等。

另一個(gè)難題是,準(zhǔn)確預(yù)測(cè)用戶已在何時(shí)完成手勢(shì)查詢。這對(duì)于準(zhǔn)確轉(zhuǎn)錄非常必要。如果太早觸發(fā)轉(zhuǎn)錄(在用戶完成手勢(shì)之前),則系統(tǒng)會(huì)開始轉(zhuǎn)錄其自己的語音。但如果觸發(fā)太晚,又可能會(huì)錯(cuò)過轉(zhuǎn)錄 Alexa 的部分反應(yīng)。為了解決這一難題,我采用了兩項(xiàng)獨(dú)立的方法,兩者各有利弊:

第一個(gè)選擇是在添加詞匯用于訓(xùn)練時(shí),將這些詞匯標(biāo)記為終點(diǎn)詞匯。我說的終點(diǎn)詞匯是指用戶只會(huì)在短語結(jié)束時(shí)使用的手勢(shì)。例如,如果查詢語句是 “Alexa, what’sthe weather?”,則將 “the weather” 作為終點(diǎn)詞匯,當(dāng)檢測(cè)到該詞匯時(shí),便可以正確觸發(fā)轉(zhuǎn)錄。這個(gè)方法雖然很好用,但這意味著用戶在訓(xùn)練期間必須要記得去標(biāo)記終點(diǎn)詞匯,并且需要依賴該詞僅會(huì)出現(xiàn)在查詢結(jié)尾的假設(shè)。這樣,如果將查詢語句調(diào)整為 “Alexa, what’sthe weatherin New York?”,則會(huì)面臨問題。我們?cè)谘菔局芯褪褂昧诉@個(gè)方法。

第二個(gè)選擇是讓用戶故意做出一個(gè)停用詞,讓系統(tǒng)知道他們的查詢語句結(jié)束了。識(shí)別到這個(gè)停用詞后,系統(tǒng)就可以觸發(fā)轉(zhuǎn)錄。所以用戶需要用手勢(shì)比出喚醒詞 > 查詢 > 停用詞。這個(gè)方法的風(fēng)險(xiǎn)在于,如果用戶忘記用手勢(shì)比出這個(gè)停用詞,就會(huì)導(dǎo)致完全不會(huì)觸發(fā)轉(zhuǎn)錄。我在另一個(gè)Github 分支中運(yùn)用了這個(gè)方法,您可以使用喚醒詞 Alexa 作為查詢 “書夾”,即 “Alexa, what’s the weather in New York”(Alexa)?”。

當(dāng)然,如果有一種方法可以準(zhǔn)確區(qū)分來自內(nèi)部信源(筆記本電腦)和外部信源(附近的 Echo)的語音,就可以解決整個(gè)問題,但那又是另一個(gè)難題。

日后,我想會(huì)有許多其他方法可以解決這個(gè)問題,這或許可以作為您自己項(xiàng)目的良好起點(diǎn),用于創(chuàng)建更穩(wěn)健而通用的模型:

Tensorflow.js 還發(fā)布了PoseNet,使用 PoseNet 也可能是一個(gè)有趣的方法。從機(jī)器的角度來看,只要追蹤幀中手腕、手肘和肩膀的位置應(yīng)該就足以對(duì)大多數(shù)詞匯作出預(yù)測(cè)。在拼寫詞匯時(shí),手指位置往往非常重要。

使用基于 CNN 的方法(例如 Pacman 示例)或許可以提高準(zhǔn)確度,并使模型更能抵御平移不變性。該方法也有助于在不同人群中更好地實(shí)現(xiàn)泛化。用戶也可以納入保存模型或加載預(yù)訓(xùn)練 Keras 模型的能力,這些都有清晰的文件記錄。這樣,您就不必在每次重啟瀏覽器時(shí)都要訓(xùn)練系統(tǒng)。

某些考慮時(shí)間特性的 CNN+RNN 或 PoseNet+RNN 組合可能會(huì)使準(zhǔn)確性受到影響。

使用 tensorflow.js 中較新的可重用kNN 分類器。

自我首次發(fā)布此項(xiàng)目以來,人們已在社交媒體上廣泛分享,媒體也進(jìn)行了相關(guān)報(bào)道,甚至 Amazon 也在 Echo Show 上實(shí)現(xiàn)上無障礙功能(點(diǎn)擊喚醒 Alexa),用于幫助講話困難的人士。雖然我并無證據(jù)可以證明是我的項(xiàng)目令他們得以實(shí)現(xiàn)這項(xiàng)功能(時(shí)間高度巧合),但如果確實(shí)如此,那真的非常酷。我希望 Amazon Show 或其他基于攝像頭和屏幕的語音助手將來都可以納入此項(xiàng)功能。對(duì)我而言,這可能是此原型展示的最終用例,并且讓數(shù)百萬新用戶都能用上這些設(shè)備。

降低網(wǎng)絡(luò)復(fù)雜度,并且采用簡(jiǎn)單地的架構(gòu)來創(chuàng)建我的原型,這絕對(duì)有助于這個(gè)項(xiàng)目的快速推廣。我的目標(biāo)并不是要解決整個(gè)手語轉(zhuǎn)文本問題。恰恰相反,我想要發(fā)起圍繞包容性設(shè)計(jì)的對(duì)話,以平易親和的方式介紹機(jī)器學(xué)習(xí),并啟發(fā)人們?nèi)ヌ剿鬟@方面的問題,這才是我希望這個(gè)項(xiàng)目能達(dá)成的目標(biāo)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 語音控制
    +關(guān)注

    關(guān)注

    5

    文章

    484

    瀏覽量

    28309
  • Alexa
    +關(guān)注

    關(guān)注

    2

    文章

    196

    瀏覽量

    23371

原文標(biāo)題:Alexa 可以響應(yīng)手語啦!借助了網(wǎng)絡(luò)攝像頭和 TensorFlow.js

文章出處:【微信號(hào):tensorflowers,微信公眾號(hào):Tensorflowers】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    如果斷網(wǎng)了,智能家居怎么辦

    產(chǎn)品。但問題來了,如果沒有網(wǎng)絡(luò)的話,這些智能家居又該怎么辦。 通常而言,隨著消費(fèi)的消費(fèi)升級(jí),對(duì)于智能家居的接受程度也越來越高,而對(duì)于廠商來說,智能家居除了能夠拓寬應(yīng)用市場(chǎng)外,其相對(duì)于傳統(tǒng)家居更高的價(jià)格,也成為產(chǎn)
    的頭像 發(fā)表于 07-04 08:34 ?9508次閱讀

    用語音代替電話鈴聲的留言控制

    電話為用語言芯片ISD1016制作的用語音代替電話鈴聲留言控制器的原理電路圖。控制器可以存貯
    發(fā)表于 06-12 10:34 ?6168次閱讀
    <b class='flag-5'>用語音</b>代替電話鈴聲的留言<b class='flag-5'>控制</b>器

    如果外部中斷只有兩個(gè)針腳可以觸發(fā)那怎么辦

    如果外部中斷只有兩個(gè)針腳可以觸發(fā)那怎么辦呢?
    發(fā)表于 03-01 07:07

    用語音識(shí)別進(jìn)行無線控制的研究

    介紹了一種用語音識(shí)別技術(shù)進(jìn)行無線控制的設(shè)計(jì)方案。采用TLV320AIC23 為語音信號(hào)的AD 轉(zhuǎn)換器,TI 的TMS320VC5509A DSP 為
    發(fā)表于 09-26 15:07 ?34次下載

    本本發(fā)熱導(dǎo)致“發(fā)燒” 那怎么辦呢?

    本本發(fā)熱導(dǎo)致“發(fā)燒” 那怎么辦呢? 焦點(diǎn):怎樣讓我們可愛的本本保持正常的“體溫”呢?   你是否曾經(jīng)聽說過,瑞典的
    發(fā)表于 01-26 11:40 ?1592次閱讀

    電腦進(jìn)入系統(tǒng)后卡死怎么辦

    電腦進(jìn)入系統(tǒng)后卡死怎么辦 癥狀:?jiǎn)?dòng)剛進(jìn)入系統(tǒng)界面時(shí),點(diǎn)什么打不開,要等一分鐘左右才能打開。     解決辦法:     一
    發(fā)表于 02-24 13:46 ?1.4w次閱讀

    文件目錄損壞怎么辦

    文件目錄損壞怎么辦 我的D盤分區(qū)是NTFS格式的,但現(xiàn)在變成RAW。而且雙擊D盤就提示:無法訪問D:/ 文件目錄損壞且無法讀取。怎么辦
    發(fā)表于 02-25 10:16 ?1137次閱讀

    若忘記了Linux系統(tǒng)的root密碼,怎么辦

    很多朋友經(jīng)常會(huì)忘記Linux系統(tǒng)的root密碼,linux系統(tǒng)忘記root密碼的情況怎么辦呢?
    的頭像 發(fā)表于 10-15 16:49 ?1.3w次閱讀

    電池?fù)Q新無法可依怎么辦

    電池壞了怎么辦?修。修不好怎么辦?換。
    發(fā)表于 03-19 11:23 ?1421次閱讀

    日常運(yùn)營(yíng)中網(wǎng)站受到安全威脅時(shí)怎么辦

    很多站長(zhǎng)辛辛苦苦做站,卻因?yàn)榘踩胧┎坏轿粚?dǎo)致網(wǎng)站被掛馬,點(diǎn)進(jìn)去都是灰色鏈接,如果不及時(shí)處理,很容易招致搜索引擎懲罰,那么網(wǎng)站被掛馬怎么辦?出現(xiàn)這種棘手的問題怎么處理?
    發(fā)表于 11-16 11:17 ?599次閱讀

    找不到服務(wù)器DNS錯(cuò)誤時(shí)怎么辦

    錯(cuò)誤怎么辦?下面分享具體解決方法。 Win7找不到服務(wù)器dns錯(cuò)誤原因及解決方法 1、病毒所致:如果你電腦中了病毒,讓你的DNS被劫持,比如自己的瀏覽器主頁被篡改了,打開一些常見網(wǎng)頁打不開或者會(huì)有彈窗、跳轉(zhuǎn)等。 解決辦法:使用
    發(fā)表于 02-03 15:07 ?4247次閱讀
    找不到服務(wù)器<b class='flag-5'>或</b>DNS錯(cuò)誤時(shí)<b class='flag-5'>該</b><b class='flag-5'>怎么辦</b>

    使用語音命令控制LED開源分享

    電子發(fā)燒友網(wǎng)站提供《使用語音命令控制LED開源分享.zip》資料免費(fèi)下載
    發(fā)表于 10-27 16:35 ?1次下載
    使<b class='flag-5'>用語音</b>命令<b class='flag-5'>控制</b>LED開源分享

    實(shí)現(xiàn)使用語音控制機(jī)械臂運(yùn)動(dòng)

    使用語音控制myCobot機(jī)械臂運(yùn)動(dòng)
    的頭像 發(fā)表于 03-17 18:13 ?1329次閱讀
    實(shí)現(xiàn)使<b class='flag-5'>用語音</b><b class='flag-5'>控制</b>機(jī)械臂運(yùn)動(dòng)

    用語音控制語音命令門鎖制作

    電子發(fā)燒友網(wǎng)站提供《用語音控制語音命令門鎖制作.zip》資料免費(fèi)下載
    發(fā)表于 06-12 10:48 ?1次下載
    <b class='flag-5'>用語音</b><b class='flag-5'>控制</b>的<b class='flag-5'>語音</b>命令門鎖制作

    工控主板發(fā)生故障怎么辦

    工控主板發(fā)生故障怎么辦?前幾天有個(gè)客戶問了我這個(gè)問題,大部分情況下出現(xiàn)的故障并不可怕,主要是用戶粗心大意造成的。那今天小編就來講解一下工控主板一般會(huì)出現(xiàn)故障的主要原因及判斷方法:
    的頭像 發(fā)表于 04-11 18:19 ?929次閱讀
    南宁百家乐官网的玩法技巧和规则 | 苏州市| 百家乐官网专业赌| 百家乐如何赚洗码| 解析百家乐官网投注法| 互博百家乐现金网| 博彩策略| 月亮城百家乐官网的玩法技巧和规则| 澳门百家乐游戏玩法| 百家乐官网网上真钱麻将| 金海岸百家乐娱乐城| 国外合法赌博网站| 百家乐筹码订做| 网上百家乐| 百家乐官网德州扑克发牌盒| 德州扑克大小顺序| 金三角百家乐官网的玩法技巧和规则| 大发888娱乐场官方| 赌博百家乐官网趋势把握| 游戏机百家乐下载| 百家乐官网打法内容介绍| 网上的百家乐官网怎么才能赢 | 百家乐单注打| 揭秘百家乐官网百分之50| 威尼斯人娱乐城官方网站| 延川县| 百家乐的珠盘| 澳门百家乐官网看路博客| 百家乐游戏| 百家乐官网网上真钱赌场娱乐网规则 | 八大胜百家乐的玩法技巧和规则| 百家乐官网干洗店| 大发888平台下载| 鑫鼎百家乐官网的玩法技巧和规则 | 宁武县| 澳门百家乐娱乐场开户注册| 百家乐官网注码法| 威尼斯人娱乐场55556| 利都百家乐官网国际娱乐场开户注册| 金沙国际娱乐城| 百家乐稳赢投注|