那曲檬骨新材料有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

詳盡介紹隔離式柵極驅(qū)動器特性

電機控制設計加油站 ? 來源:cc ? 2019-01-16 09:24 ? 次閱讀

IGBT/功率MOSFET是一種電壓控制型器件,可用作電源電路電機驅(qū)動器和其它系統(tǒng)中的開關元件。柵極是每個器件的電氣隔離控制端。MOSFET的另外兩端是源極和漏極,而對于IGBT,它們被稱為集電極和發(fā)射極。為了操作MOSFET/IGBT,通常須將一個電壓施加于柵極(相對于器件的源極/發(fā)射極而言)。使用專門驅(qū)動器向功率器件的柵極施加電壓并提供驅(qū)動電流。本文討論柵極驅(qū)動器是什么,為何需要柵極驅(qū)動器,以及如何定義其基本參數(shù),如時序、驅(qū)動強度和隔離度。

需要柵極驅(qū)動器

IGBT/功率MOSFET的結構使得柵極形成一個非線性電容。給柵極電容充電會使功率器件導通,并允許電流在其漏極和源極引腳之間流動,而放電則會使器件關斷,漏極和源極引腳上就可以阻斷大電壓。當柵極電容充電且器件剛好可以導通時的最小電壓就是閾值電壓(VTH)。為將IGBT/功率MOSFET用作開關,應在柵極和源極/發(fā)射極引腳之間施加一個充分大于VTH 的電壓。

考慮一個具有微控制器的數(shù)字邏輯系統(tǒng),其I/O引腳之一上可以輸出一個0 V至5 V的PWM信號。這種PWM將不足以使電源系統(tǒng)中使用的功率器件完全導通,因為其過驅(qū)電壓一般超過標準CMOS/TTL邏輯電壓。因此,邏輯/控制電路和高功率器件之間需要一個接口。這可以通過驅(qū)動一個邏輯電平n溝道MOSFET,其進而驅(qū)動一個功率MOSFET來實現(xiàn),如圖1a所示。

圖1.用反相邏輯驅(qū)動功率MOSFET。

如圖1a所示,當IO1發(fā)出一個低電平信號時,VGSQ1 < VTHQ1 ,因此MOSFET Q1保持關斷。結果,一個正電壓施加于功率MOSFET Q2的柵極。Q2的柵極電容(CGQ2)通過上拉電阻R1充電,柵極電壓被拉至VDD的軌電壓。 如果VDD > VTHQ2,則Q2 導通,可以傳導電流。當IO1輸出高電平時,Q1 導通,CGQ2通過Q1放電。VDSQ1 ~ 0 V,使得VGSQ2 < VTHQ2,因此Q2關斷。這種設置的一個問題是Q1導通狀態(tài)下R1的功耗。為了解決此問題,pMOSFET Q3可以作為上拉器件,其以與Q1互補的方式工作,如圖1b所示。PMOS具有較低導通電阻和非常高的關斷電阻,驅(qū)動電路中的功耗大大降低。為在柵極轉(zhuǎn)換期間控制邊沿速率,Q1 的漏極和Q2的柵極之間外加一個小電阻。使用MOSFET的另一個優(yōu)點是其易于在裸片上制作,而制作電阻則相對較難。這種驅(qū)動功率開關柵極的獨特接口可以單片IC的形式創(chuàng)建,該IC接受邏輯電平電壓并產(chǎn)生更高的功率輸出。此柵極驅(qū)動器IC幾乎總是會有其他內(nèi)部電路來實現(xiàn)更多功能,但它主要用作功率放大器和電平轉(zhuǎn)換器。

柵極驅(qū)動器的關鍵參數(shù)

驅(qū)動強度:

提供適當柵極電壓的問題通過柵極驅(qū)動器來解決,柵極驅(qū)動器執(zhí)行電平轉(zhuǎn)換任務。不過,柵極電容無法瞬間改變其電壓。因此,功率FET或IGBT具有非零的有限切換間隔時間。在切換期間,器件可能處于高電流和高電壓狀態(tài),這會產(chǎn)生功耗并轉(zhuǎn)化為熱量。因此,從一個狀態(tài)到另一個狀態(tài)的轉(zhuǎn)換需要很快,以盡可能縮短切換時間。為了實現(xiàn)這一點,需要高瞬變電流來使柵極電容快速充電和放電。

圖2.無柵極驅(qū)動器的MOSFET導通轉(zhuǎn)換

能夠在更長時間內(nèi)提供/吸收更高柵極電流的驅(qū)動器,切換時間會更短,因而其驅(qū)動的晶體管內(nèi)的開關功耗也更低。

圖3.有柵極驅(qū)動器的MOSFET導通轉(zhuǎn)換

控制器I/O引腳的拉電流和灌電流額定值通??蛇_數(shù)十毫安,而柵極驅(qū)動器可以提供高得多的電流。圖2中,當功率MOSFET由微控制器I/O引腳以最大額定拉電流驅(qū)動時,觀察到切換時間間隔較長。如圖3所示,采用ADuM4121隔離式柵極驅(qū)動器時,轉(zhuǎn)換時間大大縮短;當驅(qū)動同一功率MOSFET時,該驅(qū)動器相比微控制器I/O引腳能夠提供高得多的驅(qū)動電流。很多情況下,由于數(shù)字電路可能會透支電流,直接用微控制器驅(qū)動較大功率MOSFET/IGBT可能會使控制器過熱,進而受損。柵極驅(qū)動器具有更高驅(qū)動能力,支持快速切換,上升和下降時間只有幾納秒。這可以減少開關功率損耗,提高系統(tǒng)效率。因此,驅(qū)動電流通常被認為是選擇柵極驅(qū)動器的重要指標。

與驅(qū)動電流額定值相對應的是柵極驅(qū)動器的漏源導通電阻(RDS(ON))。理想情況下,MOSFET完全導通時的RDS(ON)值應為零,但由于其物理結構,該阻值一般在幾歐姆范圍內(nèi)。這考慮了從漏極到源極的電流路徑中的總串聯(lián)電阻。

RDS(ON)是柵極驅(qū)動器最大驅(qū)動強度額定值的真正基礎,因為它限制了驅(qū)動器可以提供的柵極電流。內(nèi)部開關的RDS(ON) 決定灌電流和拉電流,但外部串聯(lián)電阻用于降低驅(qū)動電流,因此會影響邊沿速率。如圖4所示,高端導通電阻和外部串聯(lián)電阻EXT 構成充電路徑中的柵極電阻,低端導通電阻和 REXT 構成放電路徑中的柵極電阻。

圖4.具有MOSFET輸出級和功率器件作為電容的柵極驅(qū)動器的RC電路模型

RDS(ON) 也會直接影響驅(qū)動器內(nèi)部的功耗。對于特定驅(qū)動電流,RDS(ON)值越低,則可以使用的REXT值越高。功耗分布在REXT和RDS(ON)上,因此REXT值越高,意味著驅(qū)動器外部的功耗越多。所以,對于給定芯片面積和尺寸的IC,為了提高系統(tǒng)效率并放寬驅(qū)動器內(nèi)的熱調(diào)節(jié)要求,RDS(ON) 值越低越好。

圖5.ADuM4120柵極驅(qū)動器和時序波形

時序:

柵極驅(qū)動器時序參數(shù)對評估其性能至關重要。包括ADuM4120在內(nèi)的所有柵極驅(qū)動器的一個常見時序規(guī)格(如圖5所示)是驅(qū)動器的傳播延遲(tD) ,其定義為輸入邊沿傳播到輸出所需的時間。如圖5所示,上升傳播延遲(tDHL)可以定義為輸入邊沿升至輸入高閾值(VIH)以上到輸出升至最終值10%以上的時間。類似地,下降傳播延遲(tDHL)可以表述為從輸入邊沿降至輸入低閾值VIL以下到輸出降至其高電平90%以下的時間。輸出轉(zhuǎn)換的傳播延遲對于上升沿和下降沿可能不同。

圖5還顯示了信號的上升和下降時間。這些邊沿速率受到器件可提供的驅(qū)動電流的影響,但它們也取決于所驅(qū)動的負載,這在傳播延遲計算中并未考慮。另一個時序參數(shù)是脈寬失真,其為同一器件的上升和下降傳播延遲之差。因此,脈寬失真(PWD) = |tDLH – tDHL|。

由于不同器件內(nèi)的晶體管不匹配,兩個器件的傳播延遲不會完全相同。這會導致傳播延遲偏斜(tSKEW),其定義為兩個不同器件在相同工作條件下對同一輸入作出響應時,輸出轉(zhuǎn)換之間的時間差。如圖5所示,傳播延遲偏斜被定義為器件間偏差。對于具有多個輸出通道的器件,此規(guī)格的表述方式相同,但被稱為通道間偏斜。傳播延遲偏斜通常不能在控制電路中予以補償。

圖6顯示了ADuM4121柵極驅(qū)動器的典型設置,其結合功率MOSFET使用,采用半橋配置,適合電源和電機驅(qū)動應用。在這種設置中,如果Q1 和 Q2同時導通,有可能因為電源和接地引腳短路而發(fā)生直通。這可能會永久損壞開關甚至驅(qū)動電路。為避免直通,必須在系統(tǒng)中插入一個死區(qū)時間,從而大大降低兩個開關同時導通的可能性。在死區(qū)時間間隔內(nèi),兩個開關的柵極信號為低電平,因此理想情況下,開關處于關斷狀態(tài)。如果傳播延遲偏斜較低,則所需的死區(qū)時間較短,控制變得更加可預測。偏斜越低且死區(qū)時間越短,系統(tǒng)運行會更平穩(wěn)、更高效。

時序特性很重要,因為它們會影響功率開關的操作速度。理解這些參數(shù)可以使控制電路設計更加簡單和準確。

隔離:

隔離是指系統(tǒng)中各種功能電路之間的電氣分離,使得它們之間不存在直接導通路徑。這樣,不同電路可以擁有不同的地電位。利用電感、電容或光學方法,仍可讓信號和/或電源在隔離電路之間通過。對于采用柵極驅(qū)動器的系統(tǒng),隔離對功能的執(zhí)行可能是必要的,并且也可能是安全要求。圖6中,VBUS可能有幾百伏,在給定時間可能有數(shù)十安培的電流通過Q1 或 Q2。萬一此系統(tǒng)出現(xiàn)故障時,如果損壞僅限于電子元件,則安全隔離可能是不必要的,但如果控制側涉及到人的活動,那么高功率側和低電壓控制電路之間需要電流隔離。它能防范高壓側的任何故障,因為盡管有元件損壞或失效,隔離柵仍會阻止電力到達用戶。

圖6.采用ADuM4121隔離式柵極驅(qū)動器的半橋設置中的隔離柵

為防止觸電危險,隔離是監(jiān)管機構和安全認證機構的強制要求。它還能保護低壓電子器件免受高功率側故障引起的任何損害的影響。有多種方法可以描述安全隔離,但在基本層面上,它們都與隔離柵的擊穿電壓有關。此電壓額定值一般針對驅(qū)動器的使用壽命以及特定期間和情況的電壓瞬變而給出。這些電壓電平還與驅(qū)動器IC的物理尺寸以及隔離柵上引腳之間的最小距離有關。

除安全原因外,隔離對于系統(tǒng)正常運行也可能是必不可少的。圖6顯示了電機驅(qū)動電路中常用的半橋拓撲結構,給定時間只有一個開關導通。在高功率側,低端晶體管Q2 的源極接地。Q2 的柵源電壓(VGSQ2)因此直接以地為基準,驅(qū)動電路的設計相對簡單。高端晶體管Q1的情況則不同,因為其源極是開關節(jié)點,取決于哪個開關導通,開關節(jié)點將被拉至總線電壓或地。要使Q1導通,應施加一個超過其閾值電壓的正柵源電壓(VGSQ1)。因此,當源極連接到VBUS ,Q1處于導通狀態(tài)時,其柵極電壓將高于VBUS 。如果驅(qū)動電路沒有用于接地參考的隔離,則將需要大于VBUS 的電壓來驅(qū)動Q1。這是一個繁瑣的解決方案,對于高效系統(tǒng)來說并不實用。因此,人們需要經(jīng)過電平轉(zhuǎn)換并以高端晶體管源極為基準的控制信號。這被稱為功能隔離,可以利用隔離式柵極驅(qū)動器(如ADuM4223)來實現(xiàn)。

抗擾度:

柵極驅(qū)動器用在有大量噪聲源的工業(yè)環(huán)境中。噪聲會破壞數(shù)據(jù),使系統(tǒng)不可靠,導致性能下降。因此,柵極驅(qū)動器必須具有良好的抗噪聲能力,以確保數(shù)據(jù)的完整性??箶_度與驅(qū)動器抑制電磁干擾(EMI)或RF噪聲及共模瞬變的程度有關。

EMI是指任何破壞電子器件預期操作的電氣噪聲或磁干擾。EMI(其會影響柵極驅(qū)動器)是高頻開關電路的結果,主要由大型工業(yè)電機的磁場造成。EMI可以輻射或傳導,并且可能耦合到附近的其他電路中。因此,EMI或RF抗擾度是衡量柵極驅(qū)動器抑制電磁干擾并保持穩(wěn)健運行而無差錯的能力的指標。若具有高抗擾度,驅(qū)動器便可在大型電機附近使用,而不會引起數(shù)據(jù)傳輸故障。

如圖6所示,隔離柵預期可在不同電位的接地點提供高電壓隔離。但是,高頻切換導致次級端電壓轉(zhuǎn)換的邊沿較短。由于隔離邊界之間的寄生電容,這些快速瞬變而從一側耦合到另一側,這可能導致數(shù)據(jù)損壞。其表現(xiàn)可能是在柵極驅(qū)動信號中引入抖動,或者將信號完全反轉(zhuǎn),導致效率低下,甚至在某些情況下發(fā)生直通。因此,柵極驅(qū)動器的一個決定性指標是共模瞬變抗擾度(CMTI),其定量描述隔離式柵極驅(qū)動器抑制輸入和輸出間大共模瞬變的能力。如果系統(tǒng)中的壓擺率很高,則驅(qū)動器需要有很高的抗擾度。因此,當在高頻和大總線電壓下工作時,CMTI數(shù)值特別重要。

結語

本文旨在簡單介紹柵極驅(qū)動器,因此,到目前為止討論的參數(shù)并未全面詳盡地反映隔離式柵極驅(qū)動器特性。驅(qū)動器還有其他指標,如電源電壓、容許溫度、引腳排列等,這些是每個電子器件的共同考慮因素。一些驅(qū)動器,如ADuM4135和ADuM4136,也包含保護功能或先進的檢測或控制機制。市場上的隔離式柵極驅(qū)動器種類眾多,系統(tǒng)設計人員必須了解所有這些規(guī)格和特性,以便在相關應用中就使用適當?shù)尿?qū)動器作出明智的決定。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 驅(qū)動器
    +關注

    關注

    53

    文章

    8271

    瀏覽量

    147052
  • IGBT
    +關注

    關注

    1269

    文章

    3833

    瀏覽量

    250050

原文標題:隔離式柵極驅(qū)動器揭秘

文章出處:【微信號:motorcontrol365,微信公眾號:電機控制設計加油站】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    隔離柵極驅(qū)動器的峰值電流

    隔離柵極驅(qū)動器提供電平轉(zhuǎn)換、隔離柵極驅(qū)動強度,以
    的頭像 發(fā)表于 12-19 11:46 ?2524次閱讀
    <b class='flag-5'>隔離</b><b class='flag-5'>式</b><b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>的峰值電流

    實現(xiàn)隔離半橋柵極驅(qū)動器的設計途徑

      許多應用都采用隔離半橋柵極驅(qū)動器來控制大量功率,從要求高功率密度和效率的隔離DC-DC電
    發(fā)表于 09-26 09:57

    實現(xiàn)隔離半橋柵極驅(qū)動器的設計基礎

    和下橋臂驅(qū)動器需要高度匹配的時序特性,以實現(xiàn)精確高效開關操作。這減少了半橋關斷和開通之間的死區(qū)時間。實現(xiàn)隔離半橋柵極
    發(fā)表于 10-16 16:00

    隔離柵極驅(qū)動器揭秘

    需要有很高的抗擾度。因此,當在高頻和大總線電壓下工作時,CMTI數(shù)值特別重要。結語本文旨在簡單介紹柵極驅(qū)動器,因此,到目前為止討論的參數(shù)并未全面詳盡地反映
    發(fā)表于 10-25 10:22

    隔離柵極驅(qū)動器的揭秘

    ,因此,到目前為止討論的參數(shù)并未全面詳盡地反映隔離柵極驅(qū)動器特性
    發(fā)表于 11-01 11:35

    隔離柵極驅(qū)動器規(guī)格介紹

    您好,歡迎觀看第三個討論隔離柵極驅(qū)動器的 TI 高精度實驗室講座。 我們將探討可以作為隔離
    發(fā)表于 11-10 07:54

    隔離柵極驅(qū)動器特性及應用綜述

    隔離柵極驅(qū)動器特性及應用綜述
    發(fā)表于 06-25 10:17 ?22次下載

    關鍵隔離柵極驅(qū)動器規(guī)格

    關鍵隔離柵極驅(qū)動器規(guī)格
    發(fā)表于 11-01 08:25 ?0次下載
    關鍵<b class='flag-5'>隔離</b><b class='flag-5'>式</b><b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>規(guī)格

    使用隔離柵極驅(qū)動器的實用設計指南

    使用隔離柵極驅(qū)動器的實用設計指南
    發(fā)表于 11-14 21:08 ?12次下載
    使用<b class='flag-5'>隔離</b><b class='flag-5'>式</b><b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>的實用設計指南

    隔離柵極驅(qū)動器輸入級對電機驅(qū)動應用的影響

    本文介紹了在電機驅(qū)動應用中為功率級選擇隔離柵極驅(qū)動器時,您有多種選擇。
    的頭像 發(fā)表于 11-30 09:58 ?1684次閱讀
    <b class='flag-5'>隔離</b><b class='flag-5'>式</b><b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>輸入級對電機<b class='flag-5'>驅(qū)動</b>應用的影響

    實現(xiàn)隔離半橋柵極驅(qū)動器的設計基礎

    隔離半橋柵極驅(qū)動器用于許多應用,從需要高功率密度和效率的隔離DC-DC電源模塊,到高
    的頭像 發(fā)表于 01-17 11:08 ?3681次閱讀
    實現(xiàn)<b class='flag-5'>隔離</b><b class='flag-5'>式</b>半橋<b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>的設計基礎

    使用隔離柵極驅(qū)動器的設計指南(二):電源、濾波設計與死區(qū)時間

    點擊藍字?關注我們 本設計指南分為三部分,將講解如何為電力電子應用中的功率開關器件選用合適的隔離柵極驅(qū)動器,并介紹實戰(zhàn)經(jīng)驗。上次為大家梳理了隔離
    的頭像 發(fā)表于 02-08 21:40 ?1183次閱讀

    使用隔離柵極驅(qū)動器的設計指南(一)

    使用隔離柵極驅(qū)動器的設計指南(一)
    的頭像 發(fā)表于 11-28 16:18 ?744次閱讀
    使用<b class='flag-5'>隔離</b><b class='flag-5'>式</b><b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>的設計指南(一)

    隔離柵極驅(qū)動器的影響

    電子發(fā)燒友網(wǎng)站提供《隔離柵極驅(qū)動器的影響.pdf》資料免費下載
    發(fā)表于 07-13 09:31 ?0次下載

    技術分享 柵極驅(qū)動器及其應用介紹

    一、柵極驅(qū)動器介紹 1)為什么需要柵極驅(qū)動器? 2)功率器件開關過程介紹 3)三種常見
    的頭像 發(fā)表于 09-10 09:26 ?560次閱讀
    技術分享 <b class='flag-5'>柵極</b><b class='flag-5'>驅(qū)動器</b>及其應用<b class='flag-5'>介紹</b>
    百家乐官网软件稳赚| 乐天百家乐官网的玩法技巧和规则| 真人百家乐官网网络游戏信誉怎么样| 筹码币百家乐麻将| 百家乐加牌规则| 百家乐技巧经| 澳门| 百家乐官网五湖四海娱乐场开户注册| 百家乐赌博技巧网| 新利国际娱乐网| 百家乐官网软件代理| 广东百家乐网| 在线赌球| 温州百家乐官网的玩法技巧和规则| 百家乐龙虎台布价格| 王牌国际| 华泰百家乐官网的玩法技巧和规则| 明珠百家乐的玩法技巧和规则| 赌场游戏| 富二代百家乐官网的玩法技巧和规则 | 赌场百家乐官网代理| 百家乐网站新全讯网| 362娱乐城开户| 百家乐官网英皇赌场娱乐网规则| 威尼斯人娱乐网址| 百家乐官网有方法赚反水| 百家乐代理商博彩e族| 博坊娱乐| 盈得利百家乐官网娱乐城| 大发888备用网| 申请百家乐官网会员送彩金| 百家乐娱乐平台官网网| 百家乐官网视频视频| 百家乐赢赌场百家乐| 名人线上娱乐城| 百家乐庄闲的分布| 开16个赌场敛财| 星河百家乐现金网| 手机棋牌游戏| 百家乐官网百家乐官网技巧| 娱乐网百家乐补丁|