日前,MIT的研究人員開發(fā)出一種新型 “光子” 芯片,它使用光而不是電,并且在此過程中消耗相對較少的功率。該芯片用于處理大規(guī)模神經(jīng)網(wǎng)絡(luò)的效率比現(xiàn)有的計算機高出數(shù)百萬倍。模擬結(jié)果表明,光子芯片運行光神經(jīng)網(wǎng)絡(luò)的效率是其電子芯片的1000萬倍。神經(jīng)網(wǎng)絡(luò)是一種機器學習模型,廣泛用于機器人目標識別、自然語言處理、藥物開發(fā)、醫(yī)學成像和驅(qū)動無人駕駛汽車等任務(wù)。使用光學現(xiàn)象加速計算的新型光學神經(jīng)網(wǎng)絡(luò)可以比其他電子對應物更快、更有效地運行。但隨著傳統(tǒng)神經(jīng)網(wǎng)絡(luò)和光學神經(jīng)網(wǎng)絡(luò)越來越復雜,它們消耗了大量的能量。為了解決這個問題,研究人員和包括谷歌、IBM和特斯拉在內(nèi)的主要科技公司開發(fā)了“人工智能加速器”,這是一種專門的芯片,可以提高培訓和測試神經(jīng)網(wǎng)絡(luò)的速度和效率。
對于電子芯片,包括大多數(shù)人工智能加速器,有一個理論上的最低能耗限制。最近,MIT的研究人員開始為光神經(jīng)網(wǎng)絡(luò)開發(fā)光子加速器。這些芯片執(zhí)行數(shù)量級的效率更高,但它們依賴于一些體積龐大的光學元件,這些元件限制了它們在相對較小的神經(jīng)網(wǎng)絡(luò)中的使用。
在《物理評論X》上發(fā)表的一篇論文中,MIT的研究人員描述了一種新型光子加速器,它使用更緊湊的光學元件和光信號處理技術(shù),以大幅降低功耗和芯片面積。這使得芯片可以擴展到神經(jīng)網(wǎng)絡(luò),比對應的芯片大幾個數(shù)量級。
比傳統(tǒng)電子加速器的能耗極限低1000萬倍以上
神經(jīng)網(wǎng)絡(luò)在MNIST圖像分類數(shù)據(jù)集上的模擬訓練表明,加速器理論上可以處理神經(jīng)網(wǎng)絡(luò),比傳統(tǒng)電子加速器的能耗極限低1000萬倍以上,比光子加速器的能耗極限低1000倍左右。研究人員現(xiàn)在正在研制一種原型芯片來實驗證明這一結(jié)果。
“人們正在尋找一種能夠計算出超出基本能耗極限的技術(shù),”電子研究實驗室的博士后Ryan Hamerly說:“光子加速器是很有前途的……但我們的動機是建造一個(光子加速器)可以擴展到大型神經(jīng)網(wǎng)絡(luò)?!?/p>
這些技術(shù)的實際應用包括降低數(shù)據(jù)中心的能耗?!皩τ谶\行大型神經(jīng)網(wǎng)絡(luò)的數(shù)據(jù)中心的需求越來越大,而且隨著需求的增長,它越來越難以計算,”合著者、電子研究實驗室的研究生Alexander Sludds說,其目的是“利用神經(jīng)網(wǎng)絡(luò)硬件滿足計算需求……以解決能源消耗和延遲的瓶頸”。
與Sludds和Hamerly合寫該論文的有:RLE研究生、聯(lián)合作者Liane Bernstein;麻省理工學院物理教授Marin Soljacic;一名麻省理工學院電氣工程和計算機科學副教授Dirk Englund;一名RLE的研究員,以及量子光子學實驗室的負責人。
依賴于一種更緊湊、節(jié)能的“光電”方案
神經(jīng)網(wǎng)絡(luò)通過許多包含互聯(lián)節(jié)點(稱為“神經(jīng)元”)的計算層來處理數(shù)據(jù),從而在數(shù)據(jù)中找到模式。神經(jīng)元接收來自其上游“鄰居”的輸入,并計算一個輸出信號,該信號被發(fā)送到下游更遠的神經(jīng)元。每個輸入也被分配一個“權(quán)重”,一個基于其對所有其他輸入的相對重要性的值。隨著數(shù)據(jù)在各層中“深入”傳播,網(wǎng)絡(luò)逐漸學習更復雜的信息。最后,輸出層根據(jù)整個層的計算生成預測。
所有人工智能加速器的目標都是減少在神經(jīng)網(wǎng)絡(luò)中的特定線性代數(shù)步驟(稱為“矩陣乘法”)中處理和移動數(shù)據(jù)所需的能量。在那里,神經(jīng)元和權(quán)重被編碼成單獨的行和列表,然后結(jié)合起來計算輸出。
在傳統(tǒng)的光子加速器中,脈沖激光編碼了一個層中每個神經(jīng)元的信息,然后流入波導并通過分束器。產(chǎn)生的光信號被送入一個稱為“Mach-Zehnder 干涉儀”的正方形光學元件網(wǎng)格中,該網(wǎng)格被編程為執(zhí)行矩陣乘法。干涉儀用每個重量的信息進行編碼,使用處理光信號和重量值的信號干擾技術(shù)來計算每個神經(jīng)元的輸出。但是有一個縮放問題:對于每個神經(jīng)元,必須有一個波導管,對于每個重量,必須有一個干涉儀。由于重量的數(shù)量與神經(jīng)元的數(shù)量成正比,那些干涉儀占用了大量的空間。
“你很快就會意識到輸入神經(jīng)元的數(shù)量永遠不會超過100個左右,因為你不能在芯片上安裝那么多的元件,”Hamerly說,“如果你的光子加速器不能每層處理100個以上的神經(jīng)元,那么很難將大型神經(jīng)網(wǎng)絡(luò)應用到這種結(jié)構(gòu)中。”
研究人員的芯片依賴于一種更緊湊、節(jié)能的“光電”方案,該方案利用光信號對數(shù)據(jù)進行編碼,但使用“平衡零差檢測”進行矩陣乘法。這是一種在計算兩個光信號的振幅(波高)的乘積后產(chǎn)生可測量電信號的技術(shù)。
光脈沖編碼的信息輸入和輸出神經(jīng)元的每個神經(jīng)網(wǎng)絡(luò)層——用來訓練網(wǎng)絡(luò)——通過一個單一的通道流動。用矩陣乘法表中整行權(quán)重信息編碼的單獨脈沖通過單獨的通道流動。將神經(jīng)元和重量數(shù)據(jù)傳送到零差光電探測器網(wǎng)格的光信號。光電探測器利用信號的振幅來計算每個神經(jīng)元的輸出值。每個檢測器將每個神經(jīng)元的電輸出信號輸入一個調(diào)制器,該調(diào)制器將信號轉(zhuǎn)換回光脈沖。光信號成為下一層的輸入,以此類推。
這種設(shè)計只需要每個輸入和輸出神經(jīng)元一個通道,并且只需要和神經(jīng)元一樣多的零差光電探測器,而不需要重量。因為神經(jīng)元的數(shù)量總是遠遠少于重量,這就節(jié)省了大量的空間,所以芯片能夠擴展到每層神經(jīng)元數(shù)量超過一百萬的神經(jīng)網(wǎng)絡(luò)。
找到最佳位置
有了光子加速器,信號中會有不可避免的噪聲。注入芯片的光線越多,噪音越小,精確度也越高——但這會變得非常低效。輸入光越少,效率越高,但會對神經(jīng)網(wǎng)絡(luò)的性能產(chǎn)生負面影響。但是有一個“最佳點”,Bernstein說,它在保持準確度的同時使用最小的光功率。
人工智能加速器的最佳位置是以執(zhí)行一次兩個數(shù)相乘的單一操作(如矩陣相乘)需要多少焦耳來衡量的。現(xiàn)在,傳統(tǒng)的加速器是用皮焦(picojoules)或萬億焦耳(joule)來測量的。光子加速器以attojoules測量,效率高出一百萬倍。在模擬中,研究人員發(fā)現(xiàn)他們的光子加速器可以以低于attojoules的效率運行。 “在失去準確性之前,你可以發(fā)送一些最小的光功率。我們的芯片的基本限制比傳統(tǒng)的加速器低得多。..。..并且低于其他光子加速器,”Bernstein表示。
-
MIT
+關(guān)注
關(guān)注
3文章
253瀏覽量
23501 -
電信號
+關(guān)注
關(guān)注
1文章
840瀏覽量
20673 -
光子芯片
+關(guān)注
關(guān)注
3文章
99瀏覽量
24473
原文標題:【課1.0】汽修工,你憑什么比別人掙的多?
文章出處:【微信號:qxdlyjzx,微信公眾號:汽修電路研究中心】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
糾纏光子對實現(xiàn)隱藏圖像編碼
![糾纏<b class='flag-5'>光子</b>對實現(xiàn)隱藏圖像編碼](https://file1.elecfans.com//web2/M00/08/45/wKgaombwmk-ALn6gAAJoDqeRJeQ503.png)
研究人員利用人工智能提升超透鏡相機的圖像質(zhì)量
![<b class='flag-5'>研究人員</b>利用人工智能提升超透鏡相機的圖像質(zhì)量](https://file1.elecfans.com//web2/M00/EC/96/wKgZomZnf4WANY8LAAOx39ohSPY736.jpg)
MIT/三星研究人員利用活體拉曼光譜直接觀察葡萄糖指紋圖譜
![<b class='flag-5'>MIT</b>/三星<b class='flag-5'>研究人員</b>利用活體拉曼光譜直接觀察葡萄糖指紋圖譜](https://file1.elecfans.com//web2/M00/EC/A9/wKgaomZflreADUwuAAE2PX44Emg333.png)
我國科研人員聯(lián)合研發(fā)出一款新型類腦神經(jīng)形態(tài)系統(tǒng)級芯片Speck
![我國科研<b class='flag-5'>人員</b>聯(lián)合研<b class='flag-5'>發(fā)出</b>一款<b class='flag-5'>新型</b>類腦神經(jīng)形態(tài)系統(tǒng)級<b class='flag-5'>芯片</b>Speck](https://file1.elecfans.com/web2/M00/EC/63/wKgaomZecW6AO56rAAAb8rvWw9E002.jpg)
一種可實現(xiàn)穩(wěn)定壓力傳感的新型可拉伸電子皮膚
研究人員利用定制光控制二維材料的量子特性
![<b class='flag-5'>研究人員</b>利用定制光控制二維材料的量子特性](https://file1.elecfans.com//web2/M00/E1/03/wKgaomY4CGeAHBOkAAdMGHuAaTU789.png)
研究人員開發(fā)出高性能p型非晶氧化物半導體
![<b class='flag-5'>研究人員</b><b class='flag-5'>開發(fā)出</b>高性能p型非晶氧化物半導體](https://file1.elecfans.com//web2/M00/DE/88/wKgZomYwlp6AFwqTAABbnz5Bt4I701.jpg)
研究人員開發(fā)出新型AI輔助發(fā)音系統(tǒng),讓人沒有聲帶也能說話
光子集成芯片和光子集成技術(shù)是什么
簡單認識微波光子集成芯片和硅基光子集成芯片
光子集成芯片基礎(chǔ)知識
全球領(lǐng)先微波光子芯片問世,應用廣泛
麻省理工學院開發(fā)出新的RFID標簽防篡改技術(shù)
![麻省理工學院<b class='flag-5'>開發(fā)出新</b>的RFID標簽防篡改技術(shù)](https://file1.elecfans.com//web2/M00/C1/7C/wKgaomXWv-SAXHaxAACJF8uhKwQ003.jpg)
評論