我的母親是一名護(hù)士,目前已經(jīng)退休。她是一個(gè)非常聰明的人,對自己的工作業(yè)務(wù)非常的盡職盡責(zé)。幾天前我和她說我正在研究Imagination最新的神經(jīng)網(wǎng)絡(luò)加速器,她詫異的說:你說的是什么意思?,當(dāng)然只有
2018-06-19 18:36:175332 引言 神經(jīng)網(wǎng)絡(luò)中涉及到大量的張量運(yùn)算,比如卷積,矩陣乘法,向量點(diǎn)乘,求和等。神經(jīng)網(wǎng)絡(luò)加速器就是針對張量運(yùn)算來設(shè)計(jì)的。一個(gè)神經(jīng)網(wǎng)絡(luò)加速器通常都包含一個(gè)張量計(jì)算陣列,以及數(shù)據(jù)收發(fā)控制,共同來完成諸如矩陣
2020-11-02 13:52:512478 、成本及功耗的要求。輕型嵌入式神經(jīng)網(wǎng)絡(luò)卷積式神經(jīng)網(wǎng)絡(luò) (CNN) 的應(yīng)用可分為三個(gè)階段:訓(xùn)練、轉(zhuǎn)化及 CNN 在生產(chǎn)就緒解決方案中的執(zhí)行。要想獲得一個(gè)高性價(jià)比、針對大規(guī)模車輛應(yīng)用的高效結(jié)果,必須在每階段
2017-12-21 17:11:34
大家有知道labview中神經(jīng)網(wǎng)絡(luò)和SVM的工具包是哪個(gè)嗎?求分享一下,有做這方面的朋友也可以交流一下,大家共同進(jìn)步
2017-10-13 11:41:43
神經(jīng)網(wǎng)絡(luò)基本介紹
2018-01-04 13:41:23
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
將神經(jīng)網(wǎng)絡(luò)移植到STM32最近在做的一個(gè)項(xiàng)目需要用到網(wǎng)絡(luò)進(jìn)行擬合,并且將擬合得到的結(jié)果用作控制,就在想能不能直接在單片機(jī)上做神經(jīng)網(wǎng)絡(luò)計(jì)算,這樣就可以實(shí)時(shí)計(jì)算,不依賴于上位機(jī)。所以要解決的主要是兩個(gè)
2022-01-11 06:20:53
神經(jīng)網(wǎng)絡(luò)簡介
2012-08-05 21:01:08
基于深度學(xué)習(xí)的神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05
求一個(gè)simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)加速勻速減速運(yùn)動(dòng)的模型仿真
2020-02-22 02:17:03
FPGA加速的關(guān)鍵因素是什么?EdgeBoard中神經(jīng)網(wǎng)絡(luò)算子在FPGA中的實(shí)現(xiàn)方法是什么?
2021-09-28 06:37:44
NNAPI神經(jīng)網(wǎng)絡(luò)硬件加速方案將支持基于RK3399平臺(tái)的Firefly主板,包括AIO-3399J、AIO-3399C主板。后續(xù)將更新相關(guān)主板的固件,敬請關(guān)注~~下載Firefly-RK3399 Android8.1 固件以及APK
2018-07-31 17:42:44
算法的軟件實(shí)現(xiàn)方式非常低效,所以業(yè)界對GNN的硬件加速有著非常迫切的需求。我們知道傳統(tǒng)的CNN(卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò))硬件加速方案已經(jīng)有非常多的解決方案;但是,GNN的硬件加速尚未得到充分的討論和研究,在
2021-07-07 08:00:00
MATLAB神經(jīng)網(wǎng)絡(luò)
2013-07-08 15:17:13
卡爾曼濾波的神經(jīng)網(wǎng)絡(luò)可以解決諸如BP網(wǎng)絡(luò)的一些缺陷。為大家提供幾篇這方面的參考文獻(xiàn)。
2011-02-28 09:29:36
請問:我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒有關(guān)于這部分VI的幫助文檔,對于”BP神經(jīng)網(wǎng)絡(luò)分類“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08
AI加速器設(shè)計(jì)的學(xué)習(xí)和一些思考
致謝
首先感謝電子發(fā)燒友論壇提供的書籍
然后為該書打個(gè)廣告吧,32K的幅面,非常小巧方便,全彩印刷,質(zhì)量精良,很有質(zhì)感。
前言
設(shè)計(jì)神經(jīng)網(wǎng)絡(luò)首先要考慮的幾個(gè)問題
2023-09-16 11:11:01
。
從名字上就能看出來書里可能覆蓋的內(nèi)容是和CNN加速器有關(guān)的內(nèi)容了。
作者在前言里說這本書主要討論Inference(推理)的過程,“主要討論神經(jīng)網(wǎng)絡(luò)硬件,尤其是芯片設(shè)計(jì)層面的內(nèi)容”。這本書的第2,3章
2023-09-17 16:39:45
對應(yīng)的神經(jīng)網(wǎng)絡(luò)有哪些,也看到了自己在k210中用到的FAST RCNN和RestNet18分類網(wǎng)絡(luò),需要保證硬件實(shí)現(xiàn)和算法一致,這樣才事半功倍,否則,可能會(huì)差別比較大。對于神經(jīng)網(wǎng)絡(luò)算法的執(zhí)行,加速器
2023-09-11 20:34:01
探索整個(gè)過程中資源利用的優(yōu)化使整個(gè)過程更加節(jié)能高效預(yù)計(jì)成果:1、在PYNQ上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)2、對以往實(shí)現(xiàn)結(jié)構(gòu)進(jìn)行優(yōu)化3、為卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)路在硬件上,特別是在FPGA實(shí)現(xiàn)提供一種優(yōu)化思路和方案
2018-12-19 11:37:22
神經(jīng)網(wǎng)絡(luò)的計(jì)算。對于多層多節(jié)點(diǎn)的神經(jīng)網(wǎng)絡(luò),我們可以使用矩陣乘法來表示。在上面的神經(jīng)網(wǎng)絡(luò)中,我們將權(quán)重作為一個(gè)矩陣,將第一層的輸入作為另一個(gè)矩陣,兩個(gè)矩陣相乘,得到的矩陣恰好為第二層的輸入。對于python
2019-03-03 22:10:19
,神經(jīng)網(wǎng)絡(luò)技術(shù)的第三次發(fā)展浪潮仍在繼續(xù),在其背后,高性能CPU、GPU和FPGA、ASIC以強(qiáng)大的算力為技術(shù)的應(yīng)用落地提供了有力的支持。然而目前基于FPGA平臺(tái)搭建神經(jīng)網(wǎng)絡(luò)作為控制器,適合我們自己動(dòng)手實(shí)現(xiàn)
2019-03-02 23:10:52
NPU架構(gòu)合二為一,總結(jié)并提煉出本書內(nèi)容。本書主要討論神經(jīng)網(wǎng)絡(luò)硬件層面,尤其是芯片設(shè)計(jì)層面的內(nèi)容,主要包含神經(jīng)網(wǎng)絡(luò)的分析、神經(jīng)網(wǎng)絡(luò)加速器的設(shè)計(jì)以及具體實(shí)現(xiàn)技術(shù)。通過閱讀本書,讀者可以深入了解主流
2023-07-28 10:50:51
今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺不是很難,只不過一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競爭學(xué)習(xí)的一個(gè)代表,競爭型學(xué)習(xí)
2019-07-21 04:30:00
`BP神經(jīng)網(wǎng)絡(luò)首先給出只包含一個(gè)隱層的BP神經(jīng)網(wǎng)絡(luò)模型(兩層神經(jīng)網(wǎng)絡(luò)): BP神經(jīng)網(wǎng)絡(luò)其實(shí)由兩部分組成:前饋神經(jīng)網(wǎng)絡(luò):神經(jīng)網(wǎng)絡(luò)是前饋的,其權(quán)重都不回送到輸入單元,或前一層輸出單元(數(shù)據(jù)信息是單向
2019-07-21 04:00:00
。因此,業(yè)界對GNN的硬件加速有著非常迫切的需求。盡管傳統(tǒng)的卷積神經(jīng)網(wǎng)絡(luò)(CNN)硬件加速有很多種解決方案,但GNN的硬件加速還沒有得到充分的討論和研究。在撰寫本白皮書時(shí),谷歌(Google)和百度
2021-09-25 17:20:41
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識(shí)過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個(gè)“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
簡單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57
全連接神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別
2019-06-06 14:21:42
以前的神經(jīng)網(wǎng)絡(luò)幾乎都是部署在云端(服務(wù)器上),設(shè)備端采集到數(shù)據(jù)通過網(wǎng)絡(luò)發(fā)送給服務(wù)器做inference(推理),結(jié)果再通過網(wǎng)絡(luò)返回給設(shè)備端。如今越來越多的神經(jīng)網(wǎng)絡(luò)部署在嵌入式設(shè)備端上,即
2021-12-23 06:16:40
卷積神經(jīng)網(wǎng)絡(luò)為什么適合圖像處理?
2022-09-08 10:23:10
卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對于這些非常中肯的問題,我們似乎可以給出相對簡明的答案。
2019-07-17 07:21:50
等[16- 18]進(jìn)行分類。特征提取和分類器的 設(shè)計(jì)是圖片分類等任務(wù)的關(guān)鍵,對分類結(jié)果的好壞 有著最為直接的影響。卷積神經(jīng)網(wǎng)絡(luò)可以自動(dòng)地從 訓(xùn)練樣本中學(xué)習(xí)特征并且分類,解決了人工特征設(shè)計(jì) 的局限性
2022-08-02 10:39:39
卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu) 卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44
模型。第 3 部分將研究使用專用 AI 微控制器測試模型的特定用例。什么是卷積神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)是系統(tǒng)或神經(jīng)元結(jié)構(gòu),使人工智能能夠更好地理解數(shù)據(jù),使其能夠解決復(fù)雜的問題。雖然有許多網(wǎng)絡(luò)類型,但本系
2023-02-23 20:11:10
什么是卷積神經(jīng)網(wǎng)絡(luò)?ImageNet-2010網(wǎng)絡(luò)結(jié)構(gòu)是如何構(gòu)成的?有哪些基本參數(shù)?
2021-06-17 11:48:22
Spotting)使用運(yùn)動(dòng)傳感器識(shí)別活動(dòng)狀態(tài) (Human Activity Recognition)神經(jīng)網(wǎng)絡(luò)控制系統(tǒng) (替代PID等傳統(tǒng)控制方法)圖像處理 (帶專用加速器的 MCU)...它輕量但不低能, 它支持
2019-05-01 19:03:01
神經(jīng)網(wǎng)絡(luò)可以建立參數(shù)Kp,Ki,Kd自整定的PID控制器?;贐P神經(jīng)網(wǎng)絡(luò)的PID控制系統(tǒng)結(jié)構(gòu)框圖如下圖所示:控制器由兩部分組成:經(jīng)典增量式PID控制器;BP神經(jīng)網(wǎng)絡(luò)...
2021-09-07 07:43:47
FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13
(4GB/8GB可選) ,eMMC(8GB/16GB/32GB/64GB/128GB可選)-雙核NNIE@840MHz 神經(jīng)網(wǎng)絡(luò)加速引擎-四核 DSP@700MHz,32K I-Cache /32K
2020-06-20 11:32:14
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
不確定因素影響,并且隨著可編程片上系統(tǒng)SoPC和大規(guī)模現(xiàn)場可編程門陣列FPGA的出現(xiàn),為神經(jīng)網(wǎng)絡(luò)控制器的硬件實(shí)現(xiàn)提供了新的載體。
2019-08-12 06:25:35
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11
人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03
訓(xùn)練一個(gè)神經(jīng)網(wǎng)絡(luò)并移植到Lattice FPGA上,通常需要開發(fā)人員既要懂軟件又要懂?dāng)?shù)字電路設(shè)計(jì),是個(gè)不容易的事。好在FPGA廠商為我們提供了許多工具和IP,我們可以在這些工具和IP的基礎(chǔ)上做
2020-11-26 07:46:03
稱為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30
能。 這些挑戰(zhàn)如果處理不當(dāng),將構(gòu)成重大威脅。一方面,必須要克服硬件限制條件,以在嵌入式平臺(tái)上執(zhí)行NN。另一方面,必須要克服挑戰(zhàn)的第二部分,以便快速達(dá)成解決方案,因?yàn)樯鲜袝r(shí)間是關(guān)鍵。還原至硬件解決方案以加速上市時(shí)間也不是一個(gè)明智選擇,因?yàn)樗鼰o法提供靈活性,并將快速成為發(fā)展進(jìn)化神經(jīng)網(wǎng)絡(luò)領(lǐng)域中的障礙。
2020-06-30 11:01:16
FPGA的嵌入式應(yīng)用。某人工神經(jīng)網(wǎng)絡(luò)的FPGA處理器能夠?qū)?shù)據(jù)進(jìn)行運(yùn)算處理,為了實(shí)現(xiàn)集數(shù)據(jù)通信、操作控制和數(shù)據(jù)處理于一體的便攜式神經(jīng)網(wǎng)絡(luò)處理器,需要設(shè)計(jì)一種基于嵌入式ARM內(nèi)核及現(xiàn)場可編程門陣列FPGA的主從結(jié)構(gòu)處理系統(tǒng)滿足要求。
2019-09-20 06:15:20
的支持。將恩智浦開發(fā)的硬件加速和軟件支持相結(jié)合,用戶能夠利用恩智浦邊緣處理產(chǎn)品組合的優(yōu)勢,并保證即使在部署了設(shè)備并投入實(shí)地使用之后,也能更高效地支持新興機(jī)器學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)、模型和操作員。
2023-02-17 13:51:16
有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測程序服務(wù)的嗎?
2011-12-10 13:50:46
,其算法的軟件實(shí)現(xiàn)方式非常低效,所以業(yè)界對GNN的硬件加速有著非常迫切的需求。我們知道傳統(tǒng)的CNN(卷積神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò))硬件加速方案已經(jīng)有非常多的解決方案;但是,GNN的硬件加速尚未得到充分的討論和研究
2020-10-20 09:48:39
求一個(gè)simulink的蓄電池用BP神經(jīng)網(wǎng)絡(luò)PID控制電機(jī)加速勻速減速運(yùn)動(dòng)的模型仿真
2020-02-22 02:15:50
小女子做基于labview的蒸發(fā)過程中液位的控制,想使用神經(jīng)網(wǎng)絡(luò)pid控制,請問這個(gè)控制方法可以嗎?有誰會(huì)神經(jīng)網(wǎng)絡(luò)pid控制么。。。叩謝
2016-09-23 13:43:16
1、加速神經(jīng)網(wǎng)絡(luò)的必備開源項(xiàng)目 到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒有在
2022-10-24 16:10:50
急急急!?。”救诵“祝陔姍C(jī)控制和神經(jīng)網(wǎng)絡(luò)都是新手,想請教一下大神們,有了解神經(jīng)網(wǎng)絡(luò)在電機(jī)控制方面的應(yīng)用嗎?有個(gè)導(dǎo)師給我分配任務(wù),讓我查一下相關(guān)領(lǐng)域的最新產(chǎn)品和技術(shù),就是基于神經(jīng)網(wǎng)絡(luò)的電機(jī)控制芯片有
2018-08-15 20:35:04
請問一下fpga加速神經(jīng)網(wǎng)絡(luò)為什么要用arm核呢?用其他的不行嗎
2022-07-25 14:37:58
的靈活性,以支持算法演進(jìn)、各類接口和性能;3.功能全面的Lattice sensAI通過合作伙伴生態(tài)系統(tǒng)提供模塊化硬件平臺(tái)、神經(jīng)網(wǎng)絡(luò)IP核、軟件工具、參考設(shè)計(jì)和定制化解決方案;Lattice sensAI
2018-05-23 15:31:04
定義的超掩碼表示未選擇和選擇的連接分別為0和1。HNN 從軟件方面幫助降低計(jì)算效率。然而,神經(jīng)網(wǎng)絡(luò)的計(jì)算也需要改進(jìn)硬件組件。傳統(tǒng)的 DNN 加速器具有很高的性能,但是它們沒有考慮外部存儲(chǔ)器訪問帶來
2022-03-17 19:15:13
時(shí)空記憶。增加了幾個(gè)非局部模塊后,我們的“非局部神經(jīng)網(wǎng)絡(luò)”結(jié)構(gòu)能比二維和三維卷積網(wǎng)絡(luò)在視頻分類中取得更準(zhǔn)確的結(jié)果。另外,非局部神經(jīng)網(wǎng)絡(luò)在計(jì)算上也比三維卷積神經(jīng)網(wǎng)絡(luò)更加經(jīng)濟(jì)。我們在 Kinetics
2018-11-12 14:52:50
近來,如果你對神經(jīng)網(wǎng)絡(luò)有所關(guān)注,那么你一定會(huì)發(fā)現(xiàn)神經(jīng)網(wǎng)絡(luò)的市場如日中天。實(shí)際上,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)已經(jīng)成為了人人所熟知的技術(shù)。如果你還對此很陌生,那么你可以看看我的另一篇博客,里面對相關(guān)概念進(jìn)行了
2018-04-25 16:18:001224 還擁有涉及計(jì)算機(jī)視覺和AI應(yīng)用方面的一系列IP產(chǎn)品。 上個(gè)星期PowerVR在其發(fā)展史上如虎添翼新增一項(xiàng)全新的IP產(chǎn)品——硬件神經(jīng)網(wǎng)絡(luò)加速器:“PowerVR 2NX”。
2018-04-24 18:40:002289 我的母親是一名護(hù)士,目前已經(jīng)退休。她是一個(gè)非常聰明的人,對自己的工作業(yè)務(wù)非常的盡職盡責(zé)。幾天前我和她說我正在研究Imagination最新的神經(jīng)網(wǎng)絡(luò)加速器,她詫異的說:“你說的是什么意思?”,當(dāng)然只有她在護(hù)理學(xué)校進(jìn)行外科手術(shù)培訓(xùn)或者照顧老年癡呆患者時(shí)才會(huì)真正思考神經(jīng)網(wǎng)絡(luò)意味著什么。
2018-04-26 18:44:002756 硬件開發(fā)之用。
Imagination 已于 2017 年 9 月推出首款神經(jīng)網(wǎng)絡(luò)加速器 PowerVR Series2NX。API 和 SDK 程序庫的未來版本可協(xié)助開發(fā)人員針對我們的 GPU 與 NNA 硬件開發(fā)神經(jīng)網(wǎng)絡(luò)應(yīng)用程序,無需重新撰寫程序代碼。
2018-01-26 17:05:423111 2017年9月21日 ─ Imagination Technologies 宣布推出完整、獨(dú)立式的硬件IP神經(jīng)網(wǎng)絡(luò)加速器,通過神經(jīng)網(wǎng)絡(luò)(NN)專用的PowerVR架構(gòu)實(shí)現(xiàn),可提供業(yè)界領(lǐng)先的面積
2018-04-09 07:16:001090 Series2NX NNA 神經(jīng)網(wǎng)絡(luò)加速器。2NX NNA 是按神經(jīng)網(wǎng)絡(luò)計(jì)算的特性和架構(gòu)全新設(shè)計(jì)的處理器,可以支持高效的神經(jīng)網(wǎng)絡(luò)推算過程。相比傳統(tǒng)的通用處理器,NNA 在性能、面積、功耗、帶寬等方面都有數(shù)量級(jí)上的提升?!彼f。
2018-05-03 14:37:123675 高性能計(jì)算。這兩款內(nèi)核是基于Imagination革命性的神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVRSeries2NX設(shè)計(jì)的,該架構(gòu)可以使“智能”從云端轉(zhuǎn)移至邊緣設(shè)備,從而實(shí)現(xiàn)更高的效率和實(shí)時(shí)響應(yīng)。
2018-06-21 11:02:001524 Imagination公司日前基于其神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVR 2NX推出了兩款全新的神經(jīng)網(wǎng)絡(luò)內(nèi)核AX2185和AX2145,其設(shè)計(jì)目的是在極小芯片面積上以極低功耗實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)高性能計(jì)算。
2018-06-20 10:50:043674 Imagination Technologies宣布推出其面向人工智能(AI)應(yīng)用的最新神經(jīng)網(wǎng)絡(luò)加速器(NNA)架構(gòu)PowerVR Series3NX。
2018-12-06 16:09:323256 Imagination公司的業(yè)務(wù)是為芯片設(shè)計(jì)提供必要的內(nèi)核組件,我們在嵌入式圖形處理器(GPU)和神經(jīng)網(wǎng)絡(luò)加速器(NNA)技術(shù)方面聞名,我們將這些技術(shù)授權(quán)給世界領(lǐng)先的芯片供應(yīng)商。
2018-12-22 14:35:193026 而Imagination則在2017年就發(fā)布了全球第一款神經(jīng)網(wǎng)絡(luò)加速器PowerVR?2NX NNA(簡稱2NX),這是一個(gè)專門做人工智能硬件加速的IP。作為獨(dú)立的神經(jīng)網(wǎng)絡(luò)加速器, 2NX不需要跟CPU、GPU綁定,既可以輔助加速,也可以獨(dú)立存在。
2018-12-22 16:15:275973 基于端側(cè)推斷任務(wù)深度神經(jīng)網(wǎng)絡(luò)處理器基準(zhǔn)測試結(jié)果中,Imagination的神經(jīng)網(wǎng)絡(luò)加速器在多個(gè)框架測試中成績名列第一!
2019-07-12 15:23:475005 神經(jīng)網(wǎng)絡(luò)加速賦能端側(cè)智能
2019-08-08 10:59:514314 隨著許多嵌入式系開始變得智能且自主,以人工智能(AI)神經(jīng)網(wǎng)絡(luò)為導(dǎo)向的嵌入式系統(tǒng)市場即將起飛,神經(jīng)網(wǎng)絡(luò)加速器大戰(zhàn)一觸發(fā)。
2019-11-22 11:40:06902 Imagination Technologies宣布:領(lǐng)先的無晶圓廠半導(dǎo)體公司紫光展銳(UNISOC)已獲得其最新一代神經(jīng)網(wǎng)絡(luò)加速器(NNA)PowerVR Series3NX半導(dǎo)體知識(shí)產(chǎn)權(quán)(IP)的授權(quán)許可。
2019-12-03 17:55:02874 來源:ST社區(qū) GPU和NNA(神經(jīng)網(wǎng)絡(luò)加速器)正在迅速成為AI應(yīng)用的關(guān)鍵要素。隨著不同企業(yè)開始挖掘神經(jīng)網(wǎng)絡(luò)在各種任務(wù)(比如自然語言處理、圖片分類)中的潛力,集成人工智能元素的產(chǎn)品數(shù)量正在穩(wěn)步的增長
2022-12-20 18:25:17506 據(jù)外媒報(bào)道,英國半導(dǎo)體與軟件設(shè)計(jì)公司Imagination Technologies宣布推出新一代神經(jīng)網(wǎng)絡(luò)加速器(NNA)——IMG Series4,可應(yīng)用于高級(jí)駕駛輔助系統(tǒng)(ADAS)和自動(dòng)駕駛
2020-11-16 10:28:461929 Imagination Technologies發(fā)布了最新一代神經(jīng)網(wǎng)絡(luò)加速器IP核IMG Series4 NNA,并將于12月份正式向廠商提供。 芯東西獨(dú)家獲悉,已有汽車領(lǐng)域廠商率先獲得IMG
2020-11-18 16:06:282338 ? ? 新型神經(jīng)網(wǎng)絡(luò)加速器 Maxim Integrated的新型MAX78000芯片,基于雙核MCU,結(jié)合了超低功耗深度神經(jīng)網(wǎng)絡(luò)加速器,為高性能人工智能 (AI) 應(yīng)用提供所需的算力,是機(jī)器視覺
2021-01-04 11:48:492589 “目前,采用了ImaginationIP的芯片出貨量已經(jīng)超過110億片?!倍抨拷榻B道,Imagination現(xiàn)在主要有圖形處理和通用計(jì)算兩大產(chǎn)品線,包括享譽(yù)業(yè)界多年的圖形處理器(GPU)和近兩年屢獲殊榮的神經(jīng)網(wǎng)絡(luò)加速器(NNA)產(chǎn)品,以及未來會(huì)越來越重要的光線追蹤技術(shù)。
2021-01-08 14:20:122296 神經(jīng)網(wǎng)絡(luò)加速器基本概念。
2021-05-27 15:22:5911 了一種基于FPGA的SIM卷積神經(jīng)網(wǎng)絡(luò)加速器架構(gòu)。以YOOV2目標(biāo)檢測算法為例,介紹了將卷積神經(jīng)網(wǎng)絡(luò)模型映射到FPGA上的完整流程;對加速器的性能和資源耗費(fèi)進(jìn)行深λ分析和建模,將實(shí)際傳輸延時(shí)考慮在內(nèi),縮小了加速器理論時(shí)延與實(shí)際時(shí)延
2021-05-28 14:00:2223 和 T760 芯片中采用了Imagination的PowerVR Series3NX神經(jīng)網(wǎng)絡(luò)加速器(NNA)半導(dǎo)體知識(shí)產(chǎn)權(quán)(IP)。
2021-12-28 17:16:251961 AI加速器是一類專門的硬件加速器或計(jì)算機(jī)系統(tǒng)旨在加速人工智能的應(yīng)用,主要應(yīng)用于人工智能、人工神經(jīng)網(wǎng)絡(luò)、機(jī)器視覺和機(jī)器學(xué)習(xí)。
2022-02-06 12:47:003645 電子發(fā)燒友網(wǎng)站提供《Rapanda流加速器-實(shí)時(shí)流式FPGA加速器解決方案.pdf》資料免費(fèi)下載
2023-09-13 10:17:120 電子發(fā)燒友網(wǎng)站提供《MAU加速器解決方案.pdf》資料免費(fèi)下載
2023-09-13 09:46:540 電子發(fā)燒友網(wǎng)站提供《Alveo卡的區(qū)塊鏈硬件加速器解決方案.pdf》資料免費(fèi)下載
2023-09-15 14:42:570
評(píng)論
查看更多