那曲檬骨新材料有限公司

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>人工智能>機器學習模型可解釋性的結果分析

機器學習模型可解釋性的結果分析

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

什么是“可解釋的”? 可解釋性AI不能解釋什么

通過建立既可解釋又準確的模型來改良這種錯誤的二分法。關鍵是將神經網絡與決策樹相結合,在使用神經網絡進行低級決策時保留高級的可解釋性
2020-05-31 10:51:447986

如何通過XGBoost解釋機器學習

本文為大家介紹用XGBoost解釋機器學習。 這是一個故事,關于錯誤地解釋機器學習模型的危險以及正確解釋所帶來的價值。如果你發現梯度提升或隨機森林之類的集成樹模型具有很穩定的準確率,但還是需要
2020-10-12 11:48:481557

AI模型的演變與可解釋性

人工智能正在改變幾乎所有行業和應用領域的工程。隨之而來的是對高 AI 模型準確性的需求。事實上,AI 模型在取代傳統方法時往往更準確,但這有時也會付出代價:復雜的 AI 模型是如何做出決策的;作為工程師,我們如何驗證結果是否如預期那樣有效?
2022-09-01 13:06:051629

機器學習模型評估指標

機器學習模型指標在機器學習建模過程中,針對不同的問題,需采用不同的模型評估指標。
2023-09-06 12:51:50410

如何使用TensorFlow構建機器學習模型

在這篇文章中,我將逐步講解如何使用 TensorFlow 創建一個簡單的機器學習模型
2024-01-08 09:25:34272

25個機器學習面試題,你都會嗎?

?為什么?(提示:空間復雜度)25. 為了構建一個機器學習模型,你準備了 100 個數據點和 5 種特征。為了減少偏差,你又引入了 5 個特征變量,并且又收集了 100 個數據點。請解釋這種方法是否正確。(提示:機器學習會遇到的(維度)災難,你聽說過嗎?)`
2018-09-29 09:39:54

分析一個不錯的機器學習項目簡歷收集冊

分析一個不錯的機器學習項目簡歷收集冊
2021-09-26 06:03:10

可解釋機器學習——打開機器學習黑匣子

【資源下載】《可解釋機器學習》,打開機器學習黑匣子
2020-05-20 14:16:57

機器學習模型之性能度量

機器學習模型的性能度量
2020-05-12 10:27:21

機器學習之偏差、方差,生成模型,判別模型,先驗概率,后驗概率

機器學習:偏差、方差,生成模型,判別模型,先驗概率,后驗概率
2020-05-14 15:23:39

機器算法學習比較

’ =p1H1+p2H2,則此時的信息增益ΔH = H - H’。以信息增益為原則,把所有的屬性都測試一邊,選擇一個使增益最大的屬性作為本次分枝屬性。決策樹自身的優點計算簡單,易于理解,可解釋性強;比較
2016-09-27 10:48:01

Python機器學習常用庫

統計模型上的強大的庫,主要用于預測和探索性分析,擬合線性模型、進行統計分析或者預測建模,使用 Statsmodels是非常合適的。三、PyMCPyMC是做“貝葉斯曲線”的工具,其包含貝葉斯模型、統計
2018-03-26 16:29:41

[轉]物聯網和機器學習究竟有哪些真實應用價值?

需要確定幾十個傳感器的輸入與迅速產生數百萬個數據點的外部因素之間的相關。  傳統的數據分析需要基于歷史數據和專家意見的模型來建立變量之間的關系,而機器學習結果(比如節能)出發,自動尋找預測變量及其
2017-04-19 11:01:42

【下載】《機器學習》+《機器學習實戰》

  312索引  313版權聲明  316工程師和數據科學家處理大量各種格式(如傳感器、圖像、視頻、遙測、數據庫等)的數據。他們使用機器學習來尋找數據中的模式,并建立基于歷史數據預測未來結果模型
2017-06-01 15:49:24

一種從零搭建汽車知識的語義網絡及圖譜思路

語義網絡。圖譜構建中會面臨較大的挑戰,但構建之后,可在數據分析、推薦計算、可解釋性等多個場景中展現出豐富的應用價值。  其中,構建挑戰包括:  Schema 難定義。目前尚無統一成熟的本體構建流程,且特定
2022-11-22 15:37:08

什么是機器學習? 機器學習基礎入門

模型這組讀數是否與一臺空閑的、正在運行的或壞掉的機器相對應。在這個過程中 TinyML 是如此重要,如此開創。那么 TinyML 適合哪里呢?如果還不清楚的話,機器學習是一個數據密集型的過程。當您
2022-06-21 11:06:37

如何實現機器人的自我學習

接近。如果我們用超高次多項式訓(cha)練(zhi),則訓練數據上的結果肯定為“全對”。這么說全部數據上的結果也接近全對了?不是的。這時的模型是多個“罐子取球”的疊加:在機器學習中,我們需要在巨大
2016-03-04 10:34:38

如何通過cube-ai擴展將機器學習模型部署到STM32H743ZIT6?

我正在嘗試通過 cube-ai 擴展將機器學習模型部署到 STM32H743ZIT6。該模型采用 .tflite 格式。當我嘗試分析模型時,結果如下:該工具指出 MCU 總共有 512KB 可用,模型超過了它,但在數據表上我發現有 1024KB。什么原因?
2022-12-30 08:57:53

常用python機器學習庫盤點

,詞性的解析,分類,語義解釋,概率分析還有評估。2.scikit-learnPython社區里面機器學習模塊sklearn,內置了很多算法,幾乎實現了所有基本機器學習的算法。Python機器學習庫主要
2018-05-10 15:20:21

軟體機器人學習問題探討

學習并探討軟體機器人結構設計、柔性制造、運動控制、裝配和調試等內容,使學員熟練應用控制工程理論、自動化、材料力學、機械原理、機械設計、3D打印等基礎知識,培養和提高學員對軟體機器人目標分析模型建立、設計制作和實驗測試的能力;
2019-08-12 15:09:17

部署基于嵌入的機器學習模型

1、如何在生產中部署基于嵌入的機器學習模型  由于最近大量的研究,機器學習模型的性能在過去幾年里有了顯著的提高。雖然這些改進的模型開辟了新的可能,但是它們只有在可以部署到生產應用中時才開始提供真正
2022-11-02 15:09:52

中心化模糊系統CTSK的分析及應用

從一個新角度重新探討TSK模糊系統建模問題,引入并分析推導一種新的TSK模糊系統——CTSK。與傳統TSK模糊系統相比,CTSK模糊系統具有良好的可解釋性、更好的魯棒性和較強的逼近能
2009-04-09 09:04:1520

異構信息網絡構建的推薦系統新算法研究

1) 非常完美地將各種side information融入到一個統一的模型; 2)利用meta-path,可以設計出各種各樣的推薦策略,除了推薦準確性提升之外,還能提供「可解釋性」。
2017-10-10 11:47:092645

機器學習學習迎來瓶頸期,未來3~5年都會人才緊缺

所以如果你有足夠的機器學習知識,并對特定領域有良好的理解,在職場供求中你肯定可以站在優勢的那一邊。以我的另一個回答為例「阿薩姆:反欺詐(Fraud Detection)中所用到的機器學習模型有哪些?」,特定領域的知識幫助我們更好的解釋機器學習模型結果,得到老板和客戶的認可,這才是算法落了地。
2017-10-18 15:15:512617

機器學習的十種經典算法詳解

邏輯回歸模型是一種強大的統計建模方式,它用一個或多個解釋性變量對二值輸出結果建模。它用邏輯斯蒂函數估計概率值,以此衡量分類依賴變量和一個或多個獨立的變量之間的關系,這屬于累積的邏輯斯蒂分布。
2017-12-06 09:20:119836

斯坦福探索深度神經網絡可解釋性 決策樹是關鍵

深度學習的熱潮還在不斷涌動,神經網絡再次成為業界人士特別關注的問題,AI 的未來大有可期,而深度學習正在影響我們的日常生活。近日斯坦福大學給我們分享咯一則他對深度神經網絡可解釋性的探索的論文,我們去看看他是如理解的吧!
2018-01-10 16:06:304032

機器學習可解釋性為何如此重要?

而對于自底向上的模式,將商業模型中的一部分委派給機器學習,甚至從機器學習中得到全新的商業想法。自底向上的數據科學一般與手工勞作的自動化過程相關。例如制造業公司可將傳感器放置在設備上收集數據并預測
2018-04-11 15:48:0413151

關于紅外檢測技術的解釋性論文

關于紅外檢測技術的解釋性論文
2018-05-21 11:15:582

機器學習預測世界杯的結果你相信嗎?機器學習的應用

機器學習和大數據的方法正越來越多地被用在比賽結果預測上,不僅是世界杯,也不僅是結果,球隊組成、戰術選擇和球員訓練都已經開始見到機器學習的身影。對于球迷和觀眾而言,人工智能也將展開一種全新的參與/觀看體育賽事的體驗。
2018-06-12 19:00:384929

用淺顯的語言帶領大家了解可解釋性的概念與方法

廣義上的可解釋性指在我們需要了解或解決一件事情的時候,我們可以獲得我們所需要的足夠的可以理解的信息。
2018-06-25 10:21:115608

機器學習模型的“可解釋性”的概念及其重要意義

如果考察某些類型的“事后可解釋性”(post-hoc interpretable),深度神經網絡具有明顯的優勢。深度神經網絡能夠學習豐富的表示,這些表示能夠可視化、用語言表達或用于聚類。如果考慮對可解釋性的需求,似乎線性模型在研究自然世界上的表現更好,但這似乎沒有理論上的原因。
2018-07-24 09:58:2019321

谷歌新推無程式碼機器學習模型分析工具

機器學習模型訓練完成后,需要經過反覆的探索調校,What-If Tool不需撰寫任何程式碼,就能探索機器學習模型,讓非開發人員眼能參與模型調校工作。
2018-09-14 14:47:282321

深度學習可解釋性推理方向上的進展

所以網絡學習特征向量,和未見分類一起保存于可微記憶塊之中。這一表示不斷發展,給了神經網絡學習“如何快速學習”的能力,這正是我們將其稱為元學習的原因。就這樣,神經網絡的行為開始變得更像人類了。人類聯系
2018-11-10 10:07:554777

2018年,機器學習和人工智能領域最重要的突破是什么?

正如Xavier Amatriain說的那樣,深度學習的寒冬不會到來——這項技術已經用到產業里并帶來了收益,現實讓人們收起了一部分對AI的期望和恐懼,業界開始思考數據的公平性、模型可解釋性等更本質的問題。
2018-12-26 08:59:523600

最新醫學圖像處理技術:從形成到解釋

圖像形成過程包括數據采集和圖像重建步驟,為數學逆問題提供解決方案。圖像計算的目的是改善重建圖像的可解釋性并從中提取臨床相關信息。
2019-04-15 16:29:096752

探討一些可用于解釋機器學習模型的不同技術

下圖則闡述了在需要清晰簡單的模型可解釋性時,通常首選白盒模型 (具有線性和單調函數) 的原因。圖的上半部顯示,隨著年齡的增長,購買數量會增加,模型的響應函數在全局范圍內具有線性和單調關系,易于解釋模型
2019-04-04 17:30:232470

人工數學建模和機器學習的優缺點進行介紹和比較

我主要研究醫療和金融領域的模型應用,在這些領域的實際問題中,上述模型能夠在很大程度上解決模型解釋性、人工數據生成和零樣本學習問題。因此在下面的實驗中,我使用 beta-VAEs 模型對心電圖(ETC)數據和和比特幣(BTC)的價格數據進行了分析。該實驗的代碼在 Github上可以找到。
2019-05-08 09:59:1610135

神經網絡可解釋性研究的重要性日益凸顯

神經網絡的可解釋性,從經驗主義到數學建模
2019-06-27 10:54:204942

深度學習全新打開方式Google Brain提出概念激活向量新方法

最近,Google Brain團隊的研究人員發表了一篇論文,提出了一種名為概念激活向量(Concept Activation Vectors, CAV)的新方法,它為深度學習模型可解釋性提供了一個新的視角。
2019-07-31 14:11:462702

深度理解神經網絡黑盒子:可驗證性和可解釋性

雖然神經網絡在近年來 AI 領域取得的成就中發揮了關鍵作用,但它們依舊只是有限可解釋性的黑盒函數近似器。
2019-08-15 09:17:3412652

第三代AI要處理“可解釋性”問題

語言是人類智能的重要標志,在人類文明中的地位與作用毋庸置疑,自然語言處理,通俗地解釋就是“讓計算機學習人類語言”。
2019-08-15 09:41:462540

聯想集團攜人工智能技術和解決方案亮相2019年The AI Summit

“因此,可解釋性機器學習,特別是深度學習是一個很大的挑戰。只有人類理解了AI的決策過程,才能將其應用在更廣泛的社會場景中。”徐飛玉表示。
2019-09-27 11:24:012230

谷歌AI服務闡明了機器學習模型如何做出決策

Google LLC已在其云平臺上推出了一項新的“可解釋AI”服務,旨在使機器學習模型做出決策的過程更加透明。
2019-11-30 11:06:51882

什么是可解釋的人工智能,它的定義如何

可解釋的人工智能意味著人類可以理解IT系統做出決定的路徑。人們可以通過分解這個概念來探究人工智能如此重要的原因。
2020-01-30 08:50:006437

Explainable AI旨在提高機器學習模型可解釋性

Google Cloud AI戰略總監Tracy Frey在 今天的博客中解釋說,Explainable AI旨在提高機器學習模型可解釋性。她說,這項新服務的工作原理是量化每個數據因素對模型產生的結果的貢獻,幫助用戶了解其做出決定的原因。
2020-03-24 15:14:212655

一項關于可解釋人工智能規劃(XAIP)的工作調查

可解釋AI(X AI)近年來一直是一個積極的研究課題,受到DARPA2016年倡議的推動。 計算機視覺和自然語言處理等“感知”問題的機器學習的廣泛采用,導致了分類器的可解釋性技術的發展,包括LIME和AllenNLP解釋技術。
2020-04-03 14:57:482620

2020年AI如何發展?

今年秋天,Facebook發布了帶有量化和TPU支持的PyTorch 1.3,以及深度學習可解釋性工具Captum和PyTorch Mobile。還有諸如PyRobot和PyTorch Hub之類的東西,用于共享代碼并鼓勵機器學習(ML)實踐者實現可重復性。
2020-04-15 16:40:001703

機器學習模型評估的11個指標

建立機器學習模型的想法是基于一個建設性的反饋原則。你構建一個模型,從指標中獲得反饋,進行改進,直到達到理想的精度為止。評估指標解釋模型的性能。評估指標的一個重要方面是它們區分模型結果的能力。
2020-05-04 10:04:002969

利用SHAP實現機器學習模型的輸出預測

我最喜歡的庫之一是SHAP,它是解釋機器學習模型生成的輸出不可或缺的工具。 SHAP是幾種不同的當前解釋模型的頂點,并且通過為每個特征分配重要性值來表示用于解釋模型預測的統一框架。反過來,可以繪制這些重要性值,并用于產生任何人都可以輕易解釋的漂亮可視化。
2020-05-04 18:09:007248

試圖解構AI思維邏輯臺大徐宏民力贊可信任的AI

 一般來說,效能(正確率)與可解釋性呈現負相關的關系,也就是說,可解釋性越高,效能就越差;效能越高,可解釋性就越低。
2020-05-17 09:49:08641

人工智能科技的發展將指引智能網聯汽車未來的發展方向

針對人工智能安全問題,他提出四大對策。第一方面對策是可解釋性,即我們了解或者解決一件事情的時候,可以獲得我們所需要的足夠可以理解的信息。比如說過去算法是黑盒算法,缺乏透明性、可解釋性,一旦發生問題,難以分析和驗證到底問題出處。
2020-07-04 13:00:202783

詳談機器學習的決策樹模型

決策樹模型是白盒模型的一種,其預測結果可以由人來解釋。我們把機器學習模型的這一特性稱為可解釋性,但并不是所有的機器學習模型都具有可解釋性
2020-07-06 09:49:063073

人工智能算法的可解釋性方法研究

以深度學習為代表的人工智能技術在信息領域的應用,極大地提高了信息的利用效率和挖掘價值,深刻的影響了各領域的業務形態,同時也引發了監管部門和用戶對這一新技術運用中出現的 “算法黑箱”問題關切和疑慮。如何對相關算法、模型、及其給出的結果進行合理的解釋成為數據科學家亟需解決的問題
2020-07-15 17:28:111166

理解機器學習中的算法與模型

對于初學者來說,這很容易讓人混淆,因為“機器學習算法”經常與“機器學習模型”交替使用。這兩個到底是一樣的東西呢,還是不一樣的東西?作為開發人員,你對排序算法、搜索算法等“算法”的直覺,將有助于你厘清這個困惑。在本文中,我將闡述機器學習“算法”和“模型”之間的區別。
2020-07-31 15:38:083347

dotData宣布dotData企業2.0版本的發布

AutoML中準確性和可解釋性的自動平衡 -除了追求最高準確性的模型外,還使過程自動化,以最小的準確性變化探索更簡單的ML模型。這使用戶可以根據他們的業務需求來平衡準確性和可解釋性
2020-09-11 10:32:041085

淺談機器學習模型可解釋性和透明性

對于機器學習模型來說,我們常常會提到2個概念:模型準確性(accuracy)和模型復雜度(complexity)。
2021-01-05 14:02:282825

醫學圖像分割中的置信度進行量化

在過去的十年里,深度學習在一系列的應用中取得了巨大的成功。然而,為了驗證和可解釋性,我們不僅需要模型做出的預測,還需要知道它在...
2020-12-08 22:14:02262

機器學習模型可解釋性的介紹

模型可解釋性方面的研究,在近兩年的科研會議上成為關注熱點,因為大家不僅僅滿足于模型的效果,更對模型效果的原因產生更多的思考,這...
2020-12-10 20:19:43533

用于解釋神經網絡的方法是如何發展的?

深度學習)進行圖像識別的最大挑戰之一,是難以理解為什么一個特定的輸入圖像會產生它所預測的結果。 ML模型的用戶通常想了解圖像的哪些部分是預測中的重要因素。這些說明或“解釋”之所以有價值,有很多原因: 機器學習開發人員可以分析調試模型的解
2020-12-23 10:23:091315

基于MASK模型的視頻問答機制設計方案

與問題文本特征進行3種注意力加權,利用MASK屏蔽與問題無關的答案,從而增強模型可解釋性。實驗結果表明,該模型在視頻問答任務中的準確率達到61%,與ⅤQA+、SA+等視頻問答模型相比,其具有更快的預測速度以及更好的預測效果。
2021-03-11 11:43:282

基于注意力機制的深度興趣網絡點擊率模型

和自適應激活函數,根據用戶歷史行為和給定廣告自適應地學習用戶興趣。引人注意力機制,區分不同特征對預測結果的影響程度,從而增強模型可解釋性。在3個公開數據集上的實驗結果表明,相對LR、PNN等CTR預估模型,ADIN模型具有更高的AUC值和更
2021-03-12 10:55:115

綜述深度神經網絡的解釋方法及發展趨勢

、醫藥、交通等髙風險決策領域對深度神經網絡可解釋性提岀的強烈要求,對卷積神經網絡、循環神經網絳生成對抗網絡等典型網絡的解釋方法進行分析梳理,總結并比較現有的解釋方法,同時結合目前深度神經網絡的發展趨勢,對其
2021-03-21 09:48:2318

一種擁有較好可解釋性的啟發式多分類集成算法

安全性得到重視,傳統融合策略可解釋性差的冋題凸顯。夲文基于心理學中的知識線記憶理論進行建模參考人類決策過程,提出了一種擁有較好可解釋性的啟發式多分類器集成算法,稱為知識線集成算法。該算法模擬人類學習與推斷的
2021-03-24 11:41:3313

GNN解釋技術的總結和分析與圖神經網絡的解釋性綜述

圖神經網絡的可解釋性是目前比較值得探索的方向,今天解讀的2021最新綜述,其針對近期提出的 GNN 解釋技術進行了系統的總結和分析,歸納對比了該問題的解決思路。
2021-03-27 11:45:325583

圖神經網絡的解釋性綜述

:https://arxiv.org/pdf/2012.15445.pdf 參考文獻 0.Abstract近年來,深度學習模型可解釋性研究在圖像和文本領域取得了顯著進展
2021-04-09 11:42:062440

一個機器學習系統的需求建模與決策選擇

,用戶信任通常取決于包含可解釋性、公平性等非功能需求在內的綜合需求的滿足程度,且在不同領域內應用機器學習通常有特定的需求,為保證需求描述的質量及實施過程的決策帶來了挑戰。為解決以上問題,文中提岀了一個機器學習
2021-04-23 10:36:483

基于機器學習算法的水文趨勢預測方法

針對傳統的利用神經網絡等工具進行水文趨勢預測得出結果不具備解釋性等不足,文中提出一種基于機器學習算法的水文趨勢預測方法,該方法旨在利用 XGBOOST機器學習算法建立參照期與水文預見期之間各水文特征
2021-04-26 15:39:306

面向聯邦學習的分布式與隱私安全性綜述

設計。傳統的可視化任務需要使用大量的數據,而聯邦學習的隱私性決定了其無法獲取用戶數據。因此,可用的數據主要來自服務器端的訓練過程,包括服務器端模型參數和用戶訓練狀態。基于對聯邦學習可解釋性的挑戰的分析,文
2021-04-29 11:13:593

基于狄利克雷過程的可擴展高斯混合模型

,以提升其可解釋性。此外,對高斯混合模型的推理過程進行優化,給出一種基于批次處理方式的可擴展變分推理算法,求解圖像去噪中所有隱變量的變分后驗分布,實現先驗學習。實驗結果表明,該模型在圖像去噪任務中較巸PLL等傳
2021-04-29 11:17:497

六個構建機器學習模型需避免的錯誤

近年來,機器學習在學術研究領域和實際應用領域得到越來越多的關注。但構建機器學習模型不是一件簡單的事情,它需要大量的知識和技能以及豐富的經驗,才能使模型在多種場景下發揮功效。正確的機器學習模型要以數據
2021-05-05 16:39:001238

基于遷移學習的駕駛分心行為識別模型

為了提高駕駛分心識別的應用性及識別模型可解釋性,利用遷移學習方法硏究構建駕駛人駕駛分心行為識別模型并采用神經網絡可視化技術硏究對模型進行解釋。以ⅤGσ-6模型為基礎,對原模型全連接層進行修改以適應
2021-04-30 13:46:5110

機器學習模型在功耗分析攻擊中的研究

不同的數據集的十折交叉驗證結果進行模型選擇,提高測試公平性及測試結果的泛化能力。為避免十折交叉驗證過程中出現測試集誤差不足以近似泛化誤差的問題,采用 Fried man檢驗及 Nemeny后續檢驗相結合的方法對4種機器學習算法進行評估
2021-06-03 15:53:585

探究對深度學習模型VAE的時序性解耦

的主要原因之一,尤其是對于關鍵任務應用程序。 因此,“黑匣子”的解體已成為機器學習研究人員的一個重大開放問題,并且是該領域當前感興趣的問題之一,這一研究領域通常被稱為機器學習架構的“可解釋性”。在本文中,我們將討論
2021-06-04 11:10:444139

《計算機研究與發展》—機器學習可解釋性

伴隨著模型復雜度的增加,機器學習算法的可解釋性越差,至今,機器學習可解釋性依舊是個難題.通過算法訓練出的模型被看作成黑盒子,嚴重阻礙了機器學習在某些特定領域的使用,譬如醫學、金融等領域.目前針對機器學習可解釋性
2022-01-25 08:35:36790

關于機器學習模型的六大可解釋性技術

本文介紹目前常見的幾種可以提高機器學習模型可解釋性的技術。
2022-02-26 17:20:191831

機器學習模型可解釋性算法詳解

本文介紹目前常見的幾種可以提高機器學習模型可解釋性的技術,包括它們的相對優點和缺點。
2022-02-16 16:21:313986

人工智能的透明度和可解釋性義務

  SHAP 聚類提供了機器學習模型的局部、全局和組級決策的解釋。這里提供的擴展允許對解釋進行進一步分析。這允許從業者為基于機器學習的決策構建一個敘述和解釋,以滿足業務、監管和客戶需求。
2022-04-07 09:12:232275

使用可解釋機器學習構建多樣化投資組合

  對形狀值進行聚類的想法基于 EU Horizon 項目FIN-TECH中最成功的 AI 用例,發布為可解釋機器學習在信用風險管理中的應用。它
2022-04-07 09:20:481296

使用RAPIDS加速實現SHAP的模型可解釋性

  模型解釋性 幫助開發人員和其他利益相關者理解模型特征和決策的根本原因,從而使流程更加透明。能夠解釋模型可以幫助數據科學家解釋他們的模型做出決策的原因,為模型增加價值和信任。在本文中,我們將討論:
2022-04-21 09:25:561922

InterpretML機器學習可解釋性

./oschina_soft/interpret.zip
2022-06-16 09:51:541

可解釋機器學習

可解釋機器學習
2022-06-17 14:41:051

人工智能可解釋性規制面臨的問題分析

在實踐中,人工智能的規模化應用推廣,在很大程度上依賴于用戶能否充分理解、合理信任并且有效管理人工智能這一新型伙伴。為此,確保人工智能產品、服務和系統具有透明性(Transparency)與可解釋性(Explainability)是至關重要的。
2022-08-09 10:04:011132

使用機器學習方法來預測模擬了二維二氧化硅玻璃的失效

在此,研究者通過機器學習方法分析了二維石英玻璃的結構和失效行為,并說明了如何在保持結果的定性可解釋性的情況下實現準確的失效預測。這要歸功于梯度加權類激活映射(Gradient-weighted Class Activation Mapping, Grad-CAM)的使用
2022-08-18 16:22:26850

使用TensorBoard的機器學習模型分析

機器學習正在突飛猛進地發展,新的神經網絡模型定期出現。這些模型針對特定數據集進行了訓練,并經過了準確性和處理速度的證明。開發人員需要評估 ML 模型,并確保它在部署之前滿足預期的特定閾值和功能
2022-12-06 14:35:10456

自動駕駛芯片行業趨勢

一是自動駕駛高度依賴不具備可解釋性的深度學習神經網絡,不具備可解釋性就意味著無法真正迭代升級。公認自動駕駛技術霸主的Waymo研發自動駕駛已經14年,但近10年來都沒有取得顯著進展原因就是如此。
2022-12-21 11:44:10728

機器學習模型可解釋性算法匯總

目前很多機器學習模型可以做出非常好的預測,但是它們并不能很好地解釋他們是如何進行預測的,很多數據科學家都很難知曉為什么該算法會得到這樣的預測結果。這是非常致命的,因為如果我們無法知道某個算法是如何進行預測,那么我們將很難將其前一道其它的問題中,很難進行算法的debug。
2023-02-03 11:34:061038

可以提高機器學習模型可解釋性技術

本文介紹目前常見的幾種可以提高機器學習模型可解釋性的技術,包括它們的相對優點和缺點。
2023-02-08 14:08:52861

LeCun新作:全面綜述下一代「增強語言模型

最近圖靈獎得主Yann LeCun參與撰寫了一篇關于「增強語言模型」的綜述,回顧了語言模型與推理技能和使用工具的能力相結合的工作,并得出結論,這個新的研究方向有可能解決傳統語言模型的局限性,如可解釋性、一致性和可擴展性問題。
2023-03-03 11:03:20673

如何評估機器學習模型的性能?機器學習的算法選擇

如何評估機器學習模型的性能?典型的回答可能是:首先,將訓練數據饋送給學習算法以學習一個模型。第二,預測測試集的標簽。第三,計算模型對測試集的預測準確率。
2023-04-04 14:15:19549

文獻綜述:確保人工智能可解釋性和可信度的來源記錄

本文對數據起源、可解釋AI(XAI)和可信賴AI(TAI)進行系統的文獻綜述,以解釋基本概念,說明數據起源文件可以用來提升基于人工智能系統實現可解釋性。此外,文中還討論了這個領域近期的發展模式,并對未來的研究進行展望。
2023-04-28 15:55:48905

你是什么時候對深度學習失去信心的?

這就使得,原本深度學習被詬病可解釋性問題,其實不再是問題。因為從業務頂層已經被拆分,拆分成一個個可以被人理解的因子,無法被合理解釋的因子,項目啟動的評審都無法通過。
2023-05-19 10:09:40244

可信人工智能研究方向與算法探索

為了建立可信、可控、安全的人工智能,學術界與工業界致力于增強人工智能系統與算法的可解釋性。具體地,可信人工智能旨在增強人工智能系統在知識表征、表達能力、優化與學習能力等方面的可解釋性與可量化性以及增強人工智能算法內在機理的可解釋性
2023-05-24 10:02:16363

為k近鄰機器翻譯領域自適應構建可解釋知識庫

為了找到NMT模型的潛在缺陷,構建更加可解釋的知識庫,我們提出以局部準確性這一新概念作為分析角度。其中,局部準確性又包含兩個子概念:條目準確性(entry correctness)和鄰域準確性(neighborhood correctness)。
2023-06-13 15:25:19390

機器學習中使用的5種常見數據結構和算法

使用數據結構和算法,您的代碼可以提高機器學習系統的速度、可伸縮性和可解釋性。選擇的最佳設計將取決于主要問題的精確要求。每種設計都有一定的優勢和用途。
2023-06-14 09:35:201241

機器學習模型的集成方法總結:Bagging, Boosting, Stacking, Voting, Blending

來源:DeepHubIMBA作者:AbhayParashar機器學習是人工智能的一個分支領域,致力于構建自動學習和自適應的系統,它利用統計模型來可視化、分析和預測數據。一個通用的機器學習模型包括
2022-10-19 11:29:21528

最新綜述!當大型語言模型(LLM)遇上知識圖譜:兩大技術優勢互補

LLM 是黑箱模型,缺乏可解釋性,因此備受批評。LLM 通過參數隱含地表示知識。因此,我們難以解釋和驗證 LLM 獲得的知識。此外,LLM 是通過概率模型執行推理,而這是一個非決斷性的過程。對于 LLM 用以得出預測結果和決策的具體模式和功能,人類難以直接獲得詳情和解釋
2023-07-10 11:35:001354

機器學習算法匯總 機器學習算法分類 機器學習算法模型

機器學習算法匯總 機器學習算法分類 機器學習算法模型 機器學習是人工智能的分支之一,它通過分析和識別數據模式,學習從中提取規律,并用于未來的決策和預測。在機器學習中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48632

三個主要降維技術對比介紹:PCA, LCA,SVD

隨著數據集的規模和復雜性的增長,特征或維度的數量往往變得難以處理,導致計算需求增加,潛在的過擬合和模型可解釋性降低。
2023-10-09 10:13:47422

華為云AI峰會揭示大模型實踐難題

除此之外,還存在行業訓練數據安全控制、大模型幻覺緩解消除及可解釋性、構建具有強大邏輯推理規劃能力的大模型、基于圖數據的知識增強技術、通用結構化數據特性對齊和預訓練,以及視覺領域下一個token預測任務建模等挑戰。
2023-12-25 10:33:53436

已全部加載完成

大发888在线娱乐合作伙伴| 澳门金沙娱乐场| 百家乐加牌规| 百家乐不倒翁缺点| 百家乐官网侧牌器| 百家乐官网机器昀程序| 澳门赌场有老千| 大发888手机版下载安装到手| 怎样赢百家乐的玩法技巧和规则| 游戏机百家乐作弊| 神娱乐百家乐官网的玩法技巧和规则 | 大发888棋牌游戏| 网上玩百家乐技巧| 百家乐官网技巧网址| 法拉利百家乐官网的玩法技巧和规则| 百家乐官网龙虎| 百家乐官网扑克多少张| 百家乐官网开户投注| 皇冠百家乐官网客户端皇冠| 百家乐官网游戏软件出售| 百家乐官网注码方法| 即墨市| 桃园市| 中牟县| 百家乐官网de概率| 百家乐官网出千大全| 百家乐官网是怎样的| 百家乐官网最新打法| 最新百家乐官网游戏机| 利高百家乐官网娱乐城| 长乐坊百家乐官网娱乐城| 百家乐官网视频游戏客服| 半圆百家乐官网桌子| 澳门百家乐官网玩法| 百家乐官网博送彩金18| 百家乐官网桌折叠| 百家乐官网网站可信吗| 百家乐官网喜牛| 百家乐官网五湖四海娱乐| 新锦江百家乐官网的玩法技巧和规则 | 大发888下载大发888游戏平台|