資料介紹
人工???能的發(fā)展曾經(jīng)經(jīng)歷過幾次起起伏伏,近來在深度學(xué)習(xí)技術(shù)的推動(dòng)下又迎來了一波新的前所未有的高潮。近日,IBM 官網(wǎng)發(fā)表了一篇概述文章,對(duì)人工智能技術(shù)的發(fā)展過程進(jìn)行了簡(jiǎn)單梳理,同時(shí)還圖文并茂地介紹了感知器、聚類算法、基于規(guī)則的系統(tǒng)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)等技術(shù)的概念和原理。
人類對(duì)如何創(chuàng)造智能機(jī)器的思考從來沒有中斷過。期間,人工智能的發(fā)展起起伏伏,有成功,也有失敗,以及其中暗藏的潛力。今天,有太多的新聞報(bào)道是關(guān)于機(jī)器學(xué)習(xí)算法的應(yīng)用問題,從癌癥檢查預(yù)測(cè)到圖像理解、自然語(yǔ)言處理,人工智能正在賦能并改變著這個(gè)世界。
現(xiàn)代人工智能的歷史具備成為一部偉大戲劇的所有元素。在最開始的 1950 年代,人工智能的發(fā)展緊緊圍繞著思考機(jī)器和焦點(diǎn)人物比如艾倫·圖靈、馮·諾伊曼,迎來了其第一次春天。經(jīng)過數(shù)十年的繁榮與衰敗,以及難以置信的高期望,人工智能及其先驅(qū)們?cè)俅螖y手來到一個(gè)新境界?,F(xiàn)在,人工智能正展現(xiàn)著其真正的潛力,深度學(xué)習(xí)、認(rèn)知計(jì)算等新技術(shù)不斷涌現(xiàn),且不乏應(yīng)用指向。
本文探討了人工智能及其子領(lǐng)域的一些重要方面。下面就先從人工智能發(fā)展的時(shí)間線開始,并逐個(gè)剖析其中的所有元素。
現(xiàn)代人工智能的時(shí)間線
1950 年代初期,人工智能聚焦在所謂的強(qiáng)人工智能,希望機(jī)器可以像人一樣完成任何智力任務(wù)。強(qiáng)人工智能的發(fā)展止步不前,導(dǎo)致了弱人工智能的出現(xiàn),即把人工智能技術(shù)應(yīng)用于更窄領(lǐng)域的問題。1980 年代之前,人工智能的研究一直被這兩種范式分割著,兩營(yíng)相對(duì)。但是,1980 年左右,機(jī)器學(xué)習(xí)開始成為主流,它的目的是讓計(jì)算機(jī)具備學(xué)習(xí)和構(gòu)建模型的能力,從而它們可在特定領(lǐng)域做出預(yù)測(cè)等行為。
圖 1:現(xiàn)代人工智能發(fā)展的時(shí)間線
在人工智能和機(jī)器學(xué)習(xí)研究的基礎(chǔ)之上,深度學(xué)習(xí)在 2000 年左右應(yīng)運(yùn)而生。計(jì)算機(jī)科學(xué)家在多層神經(jīng)網(wǎng)絡(luò)之中使用了新的拓?fù)鋵W(xué)和學(xué)習(xí)方法。最終,神經(jīng)網(wǎng)絡(luò)的進(jìn)化成功解決了多個(gè)領(lǐng)域的棘手問題。
在過去的十年中,認(rèn)知計(jì)算(Cognitive computing)也出現(xiàn)了,其目標(biāo)是打造可以學(xué)習(xí)并與人類自然交互的系統(tǒng)。通過成功地?fù)魯?Jeopardy 游戲的世界級(jí)選手,IBM Watson 證明了認(rèn)知計(jì)算的價(jià)值。
在本文中,我將逐一探索上述的所有領(lǐng)域,并對(duì)一些關(guān)鍵算法作出解釋。
基礎(chǔ)性人工智能
1950 年之前的研究提出了大腦是由電脈沖網(wǎng)絡(luò)組成的想法,正是脈沖之間的交互產(chǎn)生了人類思想與意識(shí)。艾倫·圖靈表明一切計(jì)算皆是數(shù)字,那么,打造一臺(tái)能夠模擬人腦的機(jī)器也就并非遙不可及。
上文說過,早期的研究很多是強(qiáng)人工智能,但是也提出了一些基本概念,被機(jī)器學(xué)習(xí)和深度學(xué)習(xí)沿用至今。
圖 2:1950 - 1980 年間人工智能方法的時(shí)間線
人工智能搜索引擎
人工智能中的很多問題可以通過強(qiáng)力搜索(brute-force search)得到解決。然而,考慮到中等問題的搜索空間,基本搜索很快就受影響。人工智能搜索的最早期例子之一是跳棋程序的開發(fā)。亞瑟·塞繆爾(Arthur Samuel)在 IBM 701 電子數(shù)據(jù)處理機(jī)器上打造了第一款跳棋程序,實(shí)現(xiàn)了對(duì)搜索樹(alpha-beta 剪枝)的優(yōu)化;這個(gè)程序也記錄并獎(jiǎng)勵(lì)具體行動(dòng),允許應(yīng)用學(xué)習(xí)每一個(gè)玩過的游戲(這是首個(gè)自我學(xué)習(xí)的程序)。為了提升程序的學(xué)習(xí)率,塞繆爾將其編程為自我游戲,以提升其游戲和學(xué)習(xí)的能力。
盡管你可以成功地把搜索應(yīng)用到很多簡(jiǎn)單問題上,但是當(dāng)選擇的數(shù)量增加時(shí),這一方法很快就會(huì)失效。以簡(jiǎn)單的一字棋游戲?yàn)槔?,游戲一開始,有 9 步可能的走棋,每 1 個(gè)走棋有 8 個(gè)可能的相反走棋,依次類推。一字棋的完整走棋樹包含 362,880 個(gè)節(jié)點(diǎn)。如果你繼續(xù)將這一想法擴(kuò)展到國(guó)際象棋或者圍棋,很快你就會(huì)發(fā)展搜索的劣勢(shì)。
感知器
感知器是單層神經(jīng)網(wǎng)絡(luò)的一個(gè)早期監(jiān)督學(xué)習(xí)算法。給定一個(gè)輸入特征向量,感知器可對(duì)輸入進(jìn)行具體分類。通過使用訓(xùn)練集,網(wǎng)絡(luò)的權(quán)重和偏差可為線性分類而更新。感知器的首次實(shí)現(xiàn)是 IBM 704,接著在自定義硬件上用于圖像識(shí)別。
圖 3:感知器與線性分類
作為一個(gè)線性分類器,感知器有能力解決線性分離問題。感知器局限性的典型實(shí)例是它無法學(xué)習(xí)專屬的 OR (XOR) 函數(shù)。多層感知器解決了這一問題,并為更復(fù)雜的算法、網(wǎng)絡(luò)拓?fù)鋵W(xué)、深度學(xué)習(xí)奠定了基礎(chǔ)。
聚類算法
使用感知器的方法是有監(jiān)督的。用戶提供數(shù)據(jù)來訓(xùn)練網(wǎng)絡(luò),然后在新數(shù)據(jù)上對(duì)該網(wǎng)絡(luò)進(jìn)行測(cè)試。聚類算法則是一種無監(jiān)督學(xué)習(xí)(unsupervised learning)方法。在這種模型中,算法會(huì)根據(jù)數(shù)據(jù)的一個(gè)或多個(gè)屬性將一組特征向量組織成聚類。
圖 4:在一個(gè)二維特征空間中的聚類
你可以使用少量代碼就能實(shí)現(xiàn)的最簡(jiǎn)單的聚類算法是 k-均值(k-means)。其中,k 表示你為樣本分配的聚類的數(shù)量。你可以使用一個(gè)隨機(jī)特征向量來對(duì)一個(gè)聚類進(jìn)行初始化,然后將其它樣本添加到其最近鄰的聚類(假定每個(gè)樣本都能表示一個(gè)特征向量,并且可以使用 Euclidean distance 來確定「距離」)。隨著你往一個(gè)聚類添加的樣本越來越多,其形心(centroid,即聚類的中心)就會(huì)重新計(jì)算。然后該算法會(huì)重新檢查一次樣本,以確保它們都在最近鄰的聚類中,最后直到?jīng)]有樣本需要改變所屬聚類。
盡管 k-均值聚類相對(duì)有效,但你必須事先確定 k 的大小。根據(jù)數(shù)據(jù)的不同,其它方法可能會(huì)更加有效,比如分層聚類(hierarchical clustering)或基于分布的聚類(distribution-based clustering)。
決策樹
決策樹和聚類很相近。決策樹是一種關(guān)于觀察(observation)的預(yù)測(cè)模型,可以得到一些結(jié)論。結(jié)論在決策樹上被表示成樹葉,而節(jié)點(diǎn)則是觀察分叉的決策點(diǎn)。決策樹來自決策樹學(xué)習(xí)算法,其中數(shù)據(jù)集會(huì)根據(jù)屬性值測(cè)試(attribute value tests)而被分成不同的子集,這個(gè)分割過程被稱為遞歸分區(qū)(recursive partitioning)。
考慮下圖中的示例。在這個(gè)數(shù)據(jù)集中,我可以基于三個(gè)因素觀察到某人是否有生產(chǎn)力。使用一個(gè)決策樹學(xué)習(xí)算法,我可以通過一個(gè)指標(biāo)來識(shí)別屬性(其中一個(gè)例子是信息增益)。在這個(gè)例子中,心情(mood)是生產(chǎn)力的主要影響因素,所以我根據(jù) Good Mood 一項(xiàng)是 Yes 或 No 而對(duì)這個(gè)數(shù)據(jù)集進(jìn)行了分割。但是,在 Yes 這邊,還需要我根據(jù)其它兩個(gè)屬性再次對(duì)該數(shù)據(jù)集進(jìn)行切分。表中不同的顏色對(duì)應(yīng)右側(cè)中不同顏色的葉節(jié)點(diǎn)。
圖 5:一個(gè)簡(jiǎn)單的數(shù)據(jù)集及其得到的決策樹
決策樹的一個(gè)重要性質(zhì)在于它們的內(nèi)在的組織能力,這能讓你輕松地(圖形化地)解釋你分類一個(gè)項(xiàng)的方式。流行的決策樹學(xué)習(xí)算法包括 C4.5 以及分類與回歸樹(Classification and Regression Tree)。
基于規(guī)則的系統(tǒng)
最早的基于規(guī)則和推理的系統(tǒng)是 Dendral,于 1965 年被開發(fā)出來,但直到 1970 年代,所謂的專家系統(tǒng)(expert systems)才開始大行其道。基于規(guī)則的系統(tǒng)會(huì)同時(shí)存有所需的知識(shí)的規(guī)則,并會(huì)使用一個(gè)推理系統(tǒng)(reasoning system)來得出結(jié)論。
基于規(guī)則的系統(tǒng)通常由一個(gè)規(guī)則集合、一個(gè)知識(shí)庫(kù)、一個(gè)推理引擎(使用前向或反向規(guī)則鏈)和一個(gè)用戶接口組成。下圖中,我使用了知識(shí)「蘇格拉底是人」、規(guī)則「如果是人,就會(huì)死」以及一個(gè)交互「誰(shuí)會(huì)死?」
圖 6:基于規(guī)則的系統(tǒng)
基于規(guī)則的系統(tǒng)已經(jīng)在語(yǔ)音識(shí)別、規(guī)劃和控制以及疾病識(shí)別等領(lǐng)域得到了應(yīng)用。上世紀(jì) 90 年代人們開發(fā)的一個(gè)監(jiān)控和診斷大壩穩(wěn)定性的系統(tǒng) Kaleidos 至今仍在使用。
機(jī)器學(xué)習(xí)
機(jī)器學(xué)習(xí)是人工智能和計(jì)算機(jī)科學(xué)的一個(gè)子領(lǐng)域,也有統(tǒng)計(jì)學(xué)和數(shù)學(xué)優(yōu)化方面的根基。機(jī)器學(xué)習(xí)涵蓋了有監(jiān)督學(xué)習(xí)和無監(jiān)督學(xué)習(xí)領(lǐng)域的技術(shù),可用于預(yù)測(cè)、分析和數(shù)據(jù)挖掘。機(jī)器學(xué)習(xí)不限于深度學(xué)習(xí)這一種。但在這一節(jié),我會(huì)介紹幾種使得深度學(xué)習(xí)變得如此高效的算法。
圖 7:機(jī)器學(xué)習(xí)方法的時(shí)間線
反向傳播
神經(jīng)網(wǎng)絡(luò)的強(qiáng)大力量源于其多層的結(jié)構(gòu)。單層感知器的訓(xùn)練是很直接的,但得到的網(wǎng)絡(luò)并不強(qiáng)大。那問題就來了:我們?nèi)绾斡?xùn)練多層網(wǎng)絡(luò)呢?這就是反向傳播的用武之地。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 2023年人工智能產(chǎn)業(yè)概況及應(yīng)用趨勢(shì)分析 8次下載
- 一文了解SiP封裝資料下載
- 一文了解I/Q 信號(hào)資料下載
- 一文了解藍(lán)牙配對(duì)的三個(gè)階段資料下載
- 一文了解IGBT基礎(chǔ)知識(shí)資料下載
- 一文了解車載充電機(jī)資料下載
- 智能系統(tǒng)的定義與識(shí)別:人造智能與人工智能資料下載
- 一文了解無線傳感器網(wǎng)絡(luò)(WSN)結(jié)構(gòu)特點(diǎn)資料下載
- IC Design是否會(huì)被人工智能取代?資料下載
- 嵌入式系統(tǒng)與人工智能資料下載
- 從原始的人工智能代理到智能機(jī)器資料下載
- 一文了解欠壓保護(hù)資料下載
- 人工智能到底是什么?什么工作需要學(xué)習(xí)人工智能 17次下載
- 人工智能與產(chǎn)業(yè)發(fā)展的融合復(fù)習(xí)題資料免費(fèi)下載 15次下載
- 人工智能行業(yè)發(fā)展?fàn)顩r如何?人工智能行業(yè)研究報(bào)告詳細(xì)資料免費(fèi)下載 15次下載
- 人工智能的工作原理和特點(diǎn) 1629次閱讀
- 人工智能領(lǐng)域多模態(tài)的概念和應(yīng)用場(chǎng)景 1w次閱讀
- 一文綜述人工智能技術(shù)的發(fā)展 1949次閱讀
- 人工智能的概念、現(xiàn)狀和未來 6106次閱讀
- 人工智能中計(jì)算機(jī)視覺技術(shù)的歷史和現(xiàn)狀及未來你了解多少 9130次閱讀
- 人工智能進(jìn)一筆了解人類的三大技術(shù) 672次閱讀
- 什么是人工智能上百個(gè)人工智能的經(jīng)典問答 6193次閱讀
- 一文了解人工智能時(shí)代零售業(yè)的智能變革 3058次閱讀
- 人工智能的基礎(chǔ)概念與常見誤解 3561次閱讀
- Python和人工智能的關(guān)系及應(yīng)用的詳細(xì)資料概述 5318次閱讀
- 人工智能,你了解多少? 1697次閱讀
- 人工智能發(fā)展背后的需求沒有大數(shù)據(jù),人工智能無法生存 4523次閱讀
- 人工智能需要哪些知識(shí)_人工智能需要學(xué)什么_如何自學(xué)人工智能 4.4w次閱讀
- 關(guān)于人工智能這篇文章最易懂:原理、技術(shù)和未來 1533次閱讀
- 人工智能入門基礎(chǔ) 7548次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費(fèi)下載
- 0.00 MB | 1491次下載 | 免費(fèi)
- 2單片機(jī)典型實(shí)例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實(shí)例詳細(xì)資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識(shí)別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關(guān)電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費(fèi)
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機(jī)和 SG3525的程控開關(guān)電源設(shè)計(jì)
- 0.23 MB | 4次下載 | 免費(fèi)
- 8基于AT89C2051/4051單片機(jī)編程器的實(shí)驗(yàn)
- 0.11 MB | 4次下載 | 免費(fèi)
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費(fèi)
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費(fèi)
- 4LabView 8.0 專業(yè)版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費(fèi)
- 5555集成電路應(yīng)用800例(新編版)
- 0.00 MB | 33562次下載 | 免費(fèi)
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費(fèi)
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費(fèi)
- 8開關(guān)電源設(shè)計(jì)實(shí)例指南
- 未知 | 21539次下載 | 免費(fèi)
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費(fèi)
- 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
- 78.1 MB | 537793次下載 | 免費(fèi)
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費(fèi)
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費(fèi)
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費(fèi)
- 6電路仿真軟件multisim 10.0免費(fèi)下載
- 340992 | 191183次下載 | 免費(fèi)
- 7十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
- 158M | 183277次下載 | 免費(fèi)
- 8proe5.0野火版下載(中文版免費(fèi)下載)
- 未知 | 138039次下載 | 免費(fèi)
評(píng)論