那曲檬骨新材料有限公司

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
電子發燒友網>電子資料下載>類型>參考設計>ADXRS453-用于瑞薩微控制器平臺的無操作系統驅動程序

ADXRS453-用于瑞薩微控制器平臺的無操作系統驅動程序

2021-04-20 | pdf | 1.66MB | 次下載 | 3積分

資料介紹

This version (25 Jan 2021 05:29) was approved by Robin Getz.The Previously approved version (24 Jan 2021 18:20) is available.Diff

ADXRS453 - No-OS Driver for Renesas Microcontroller Platforms

Supported Devices

Evaluation Boards

Overview

The ADXRS453 is an angular rate sensor (gyroscope) intended for industrial, instrumentation, and stabilization applications in high vibration environments. An advanced, differential, quad sensor design rejects the influence of linear acceleration, enabling the ADXRS453 to offer high accuracy rate sensing in harsh environments where shock and vibration are present.

The ADXRS453 uses an internal, continuous self-test architecture. The integrity of the electromechanical system is checked by applying a high frequency electrostatic force to the sense structure to generate a rate signal that can be differentiated from the base-band rate data and internally analyzed.

The ADXRS453 is capable of sensing an angular rate of up to ±300°/sec. Angular rate data is presented as a 16-bit word that is part of a 32-bit SPI message.

The ADXRS453 is available in a 16-lead plastic cavity SOIC (SOIC_CAV) and an SMT-compatible vertical mount package (LCC_V), and is capable of operating across a wide voltage range (3.3 V to 5 V).

Applications

  • Rotation sensing in high vibration environments
  • Rotation sensing for industrial and instrumentation applications
  • High performance platform stabilization

28 Sep 2012 16:19 · Dragos Bogdan

The goal of this project (Microcontroller No-OS) is to be able to provide reference projects for lower end processors, which can't run Linux, or aren't running a specific operating system, to help those customers using microcontrollers with ADI parts. Here you can find a generic driver which can be used as a base for any microcontroller platform and also specific drivers for different microcontroller platforms.

Driver Description

The driver contains two parts:

  • The driver for the ADXRS453 part, which may be used, without modifications, with any microcontroller.
  • The Communication Driver, where the specific communication functions for the desired type of processor and communication protocol have to be implemented. This driver implements the communication with the device and hides the actual details of the communication protocol to the ADI driver.

The Communication Driver has a standard interface, so the ADXRS453 driver can be used exactly as it is provided.

There are three functions which are called by the ADXRS453 driver:

  • SPI_Init() – initializes the communication peripheral.
  • SPI_Write() – writes data to the device.
  • SPI_Read() – reads data from the device.

SPI driver architecture

The following functions are implemented in this version of ADXRS453 driver:

Function Description
char ADXRS453_Init(void) Initializes the ADXRS453 and checks if the device is present.
unsigned short ADXRS453_GetRegisterValue(unsigned char regAddress) Reads the value of a register.
void ADXRS453_SetRegisterValue(unsigned char regAddress, unsigned short regData) Writes data into a register.
unsigned long ADXRS453_GetSensorData(void) Reads the sensor data.
float ADXRS453_GetRate(void) Reads the rate data and converts it to degrees/second.
float ADXRS453_GetTemperature(void) Reads temperature from ADXRS453 and converts it to degrees Celsius.
01 Oct 2012 15:25 · Dragos Bogdan

Downloads

Renesas RL78G13 Quick Start Guide

This section contains a description of the steps required to run the ADXRS453 demonstration project on a Renesas RL78G13 platform.

Required Hardware

Required Software

Hardware Setup

A PmodGYRO2 has to be connected to the PMOD1 connector, pins 1 to 6 (see image below).

Reference Project Overview

The reference project:

  • reads the 10-Bit Temperature Data and the 16-Bit Rate Data;
  • displays the values on the LCD as degrees Celsius and degrees/sec respectively.

Software Project Tutorial

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G13 for controlling and monitoring the operation of the ADI part.

  • Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
  • Choose to create a new project (Project – Create New Project).
  • Select the RL78 tool chain, the Empty project template and click OK.

  • Select a location and a name for the project (ADIEvalBoard for example) and click Save.

  • Open the project’s options window (Project – Options).
  • From the Target tab of the General Options category select the RL78 – R5F100LE device.

  • From the Setup tab of the Debugger category select the TK driver and click OK.

  • Extract the files from the lab .zip archive and copy them into the project’s folder.

  • The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.

  • At this moment, all the files are included into the project.
  • The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
  • A window will appear asking to configure the emulator. Keep the default settings and press OK.

  • To run the project press F5.

03 Sep 2012 13:02 · Dragos Bogdan

Renesas RL78G14 Quick Start Guide

This section contains a description of the steps required to run the ADXRS453 demonstration project on a Renesas RL78G14 platform using the PmodGYRO2.

Required Hardware

Required Software

The ADXRS453 demonstration project for the Renesas RL78G14 platform consists of three parts: the ADXRS453 Driver, the PmodGYRO2 Demo for RL78G14 and the RL78G14 Common Drivers.

All three parts have to be downloaded.

Hardware Setup

A PmodGYRO2 has to be connected to the PMOD1 connector, pins 1 to 6 (see image below).

Reference Project Overview

The reference project:

  • reads the 10-Bit Temperature Data and the 16-Bit Rate Data;
  • displays the values on the LCD as degrees Celsius and degrees/sec respectively.
  • If you rotate the Pmod slowly, you will see a smaller value (e.g. 30 Degrees/Second), while rotating the Pmod at a higher speed will result in a higher value (e.g. 300 degrees/second). Afterwards the device will auto calibrate according to its new position, thus displaying a value close to 0 degrees/second.

Software Project Tutorial

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RL78G14 for controlling and monitoring the operation of the ADI part.

  • Run the IAR Embedded Workbench for Renesas RL78 integrated development environment.
  • Choose to create a new project (Project – Create New Project).
  • Select the RL78 tool chain, the Empty project template and click OK.

  • Select a location and a name for the project (ADIEvalBoard for example) and click Save.

  • Open the project’s options window (Project – Options).
  • From the Target tab of the General Options category select the RL78 – R5F104PJ device.

  • From the Setup tab of the Debugger category select the TK driver and click OK.

  • Copy the downloaded files into the project's folder.

  • The new source files have to be included into the project. Open the Add Files… window (Project – Add Files…), select all the copied files and click open.

  • At this moment, all the files are included into the project.
  • The project is ready to be compiled and downloaded on the board. Press the F7 key to compile it. Press CTRL + D to download and debug the project.
  • A window will appear asking to configure the emulator. Keep the default settings and press OK.

  • To run the project press F5.

09 May 2013 17:10 · Dragos Bogdan

Renesas RX62N Quick Start Guide

This section contains a description of the steps required to run the ADXRS453 demonstration project on a Renesas RX62N platform.

Required Hardware

Required Software

Hardware Setup

A PmodGYRO2 has to be interfaced with the Renesas Demonstration Kit (RDK) for RX62N:

  PmodGYRO2 Pin 1 (CS)   → YRDKRX62N J8 connector Pin 15
  PmodGYRO2 Pin 2 (MOSI) → YRDKRX62N J8 connector Pin 19
  PmodGYRO2 Pin 3 (MISO) → YRDKRX62N J8 connector Pin 22
  PmodGYRO2 Pin 4 (CLK)  → YRDKRX62N J8 connector Pin 20
  PmodGYRO2 Pin 5 (GND)  → YRDKRX62N J8 connector Pin 4
  PmodGYRO2 Pin 6 (VCC)  → YRDKRX62N J8 connector Pin 3

Reference Project Overview

The reference project reads the 10-Bit Temperature Data and the 16-Bit Rate Data. The values are displayed on the LCD as degrees Celsius and degrees/sec respectively.

Software Project Setup

This section presents the steps for developing a software application that will run on the Renesas Demo Kit for RX62N for controlling and monitoring the operation of the ADI part.

  • Run the High-performance Embedded Workshop integrated development environment.
  • A window will appear asking to create or open project workspace. Choose “Create a new project workspace” option and press OK.
  • From “Project Types” option select “Application”, name the Workspace and the Project “ADIEvalBoard”, select the “RXCPU family and “Renesas RX Standard” tool chain. Press OK.

  • A few windows will appear asking to configure the project:
    • In the “Select Target CPU” window, select “RX600” CPU series, “RX62N” CPU Type and press Next.
    • In the “Option Setting” windows keep default settings and press Next.
    • In the “Setting the Content of Files to be generated” window select “None” for the “Generate main() Function” option and press Next.
    • In the “Setting the Standard Library” window press “Disable all” and then Next.
    • In the “Setting the Stack Area” window check the “Use User Stack” option and press Next.
    • In the “Setting the Vector” window keep default settings and press Next.
    • In the “Setting the Target System for Debugging” window choose “RX600 Segger J-Link” target and press Next.
    • In the “Setting the Debugger Options” and “Changing the Files Name to be created” windows keep default settings, press Next and Finish.
  • The workspace is created.

  • The RPDL (Renesas Peripheral Driver Library) has to integrated in the project. Unzip the RPDL files (double-click on the file “RPDL_RX62N.exe”). Navigate to where the RPDL files were unpacked and double-click on the “Copy_RPDL_RX62N.bat” to start the copy process. Choose the LQFP package, type the full path where the project was created and after the files were copied, press any key to close the window.
  • The new source files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Double click on the RPDL folder. From the “Files of type” drop-down list, select “C source file (*.C)”. Select all of the files and press Add.

  • To avoid conflicts with standard project files remove the files “intprg.c” and “vecttbl.c” which are included in the project. Use the key sequence Alt, P, R to open the “Remove Project Files” window. Select the files, click on Remove and press OK.

  • Next the new directory has to be included in the project. Use the key sequence Alt, B, R to open the “RX Standard Toolchain” window. Select the C/C++ tab, select “Show entries for: Include file directories” and press Add. Select “Relative to: Project directory”, type “RPDL” as sub-directory and press OK.

  • The library file path has to be added in the project. Select the Link/Library tab, select “Show entries for: Library files” and press Add. Select “Relative to: Project directory”, type “RPDL/RX62N_library” as file path and press OK.

  • Because the “intprg.c” file was removed the “PIntPrg” specified in option “start” has to be removed. Change “Category” to “Section”. Press “Edit”, select “PIntPRG” and press “Remove”. From this window the address of each section can be also modified. After all the changes are made press OK two times.

  • At this point the files extracted from the zip file located in the “Software Tools” section have to be added into the project. Copy all the files from the archive into the project folder.

  • Now, the files have to be included in the project. Use the key sequence Alt, P, A to open the “Add files to project ‘ADIEvalBoard’” window. Navigate into ADI folder. From the “Files of type” drop-down list, select “Project Files”. Select all the copied files and press Add.

  • Now, the project is ready to be built. Press F7. The message after the Build Process is finished has to be “0 Errors, 0 Warnings”. To run the program on the board, you have to download the firmware into the microprocessor’s memory.
03 Feb 2012 15:32 · Dragos Bogdan

More information

01 Jun 2012 12:17
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費下載
  2. 0.00 MB  |  1491次下載  |  免費
  3. 2單片機典型實例介紹
  4. 18.19 MB  |  95次下載  |  1 積分
  5. 3S7-200PLC編程實例詳細資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關電源原理及各功能電路詳解
  10. 0.38 MB  |  11次下載  |  免費
  11. 6100W短波放大電路圖
  12. 0.05 MB  |  4次下載  |  3 積分
  13. 7基于單片機和 SG3525的程控開關電源設計
  14. 0.23 MB  |  4次下載  |  免費
  15. 8基于AT89C2051/4051單片機編程器的實驗
  16. 0.11 MB  |  4次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費
  7. 4LabView 8.0 專業版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費
  9. 5555集成電路應用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費
  15. 8開關電源設計實例指南
  16. 未知  |  21539次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537793次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191183次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138039次下載  |  免費
菲律宾百家乐官网娱乐| 二八杠单机游戏| 赌场百家乐官网代理| 大发888大家赢娱乐| 半圆百家乐桌子| 网络百家乐官网金海岸破解软件| 优博在线| 大发888备用网站| 百家乐开户首选| 蓝盾百家乐官网的玩法技巧和规则 | 百家乐太阳城球讯网| 百家乐官网破解| 锡林郭勒盟| 娱乐城开户送现金| 网上百家乐是不是真的| 百家乐香港六合彩| 百家乐官网透明发牌机| 现金百家乐官网攻略| 天门市| 伟德亚洲| 大发888网页登录帐号| 玩百家乐技巧巧| 实战百家乐博彩正网| 百家乐官网高| 网上百家乐官网真的假| 网上百家乐官网官方网站| 立博足球投注网| 大发888真人娱乐场游戏平台| 多台百家乐的玩法技巧和规则| 澳门百家乐大揭密| 百家乐最新投注法| 银泰国际娱乐城| 最好的棋牌游戏大厅| 申博太阳城官网| 百博百家乐的玩法技巧和规则 | 专业百家乐官网软件| 百家乐官网程序软件| 线上百家乐官网技巧| 百家乐官网庄闲收益率| 富易堂百家乐官网娱乐城| 百家乐技巧看路|