電子管是一種在氣密性封閉容器(一般為玻璃管)中產生電流傳導,利用電場對真空中的電子流的作用以獲得信號放大或振蕩的電子器件。早期應用于電視機、收音機擴音機等電子產品中,近年來逐漸被晶體管和集成電路所取代,但目前在一些高保真音響器材中,仍然使用電子管作為音頻功率放大器件(香港人稱使用電子管功率放大器為“煲膽”)。
電子管在電器中用字母“V”或“VE”表示,舊標準用字母“G”表示。
1904年,世界上第一只電子管在英國物理學家弗萊明的手下誕生了。弗萊明為此獲得了這項發明的專利權。人類第一只電子管的誕生,標志著世界從此進入了電子時代。
說起電子管的發明,我們首先得從“愛迪生效應”談起。愛迪生這位舉世聞名的大發明家,在研究白熾燈的壽命時,在燈泡的碳絲附近焊上一小塊金屬片。結果,他發現了一個奇怪的現象:金屬片雖然沒有與燈絲接觸,但如果在它們之間加上電壓,燈絲就會產生一股電流,趨向附近的金屬片。這股神秘的電流是從哪里來的?愛迪生也無法解釋,但他不失時機地將這一發明注冊了專利,并稱之為“愛迪生效應”。后來,有人證明電流的產生是因為熾熱的金屬能向周圍發射電子造成的。但最先預見到這一效應具有實用價值的,則是英國物理學家和電氣工程師弗萊明。
由于電子管體積大、功耗大、發熱厲害、電源利用效率低、結構脆弱而且需要高壓電源的缺點,現在它的絕大部分用途已經基本被固體器件晶體管所取代。但是電子管負載能力強,線性性能優于晶體管,在高頻大功率領域的工作特性要比晶體管更好,所以仍然在一些地方(如大功率無線電發射設備)繼續發揮著不可替代的作用。
??(一)按用途分類
電子管按其用途的不同可分為電壓放大管、功率大管、充氣管、閘流管、引燃管、混頻或變頻管、整流管、振蕩管、檢波管、調諧指過管、穩壓管等。
??(二)按電極數分類
電子管按其電極數的不同可分為電壓放大管、三極管、四極管、五極管、六極管、七極管、八極管、九極管和復合管等。三極以上的電管又稱為多極管或多柵管。
??(三)按外形分類
電子管按其外形及外殼材料可分為瓶形玻璃管(ST管)、“橡實”管、筒形玻璃管(GT管)、大型玻璃管(G式管)、金屬瓷管、小型管(也稱花生管或指形管、MT管)、塔形管、超小型管(鉛筆形管)等多種。
??(四)按內部結構分類
電子管按其內部結構可分為單二極管、二極管、雙二極三極管、雙二極管極管、單三極管、功率五極管、束射四極管、束射五極管、雙一極管、二極——五極復合管、又束射四極管、三極-五極復合管、三極-六極復合管、三極-七極復合管、束射功率各處室等多種類型。
??(五)按陰極的加熱方式分類
電子管按陰極的加熱方式可分為直熱式陰極電子管(電流直接通過陰極使其達到熱電子發射狀態)和旁熱式陰極電子管(通過陰極旁的燈絲加熱陰極)。
??(六)按屏蔽方式分類
電子管按屏蔽方式可分為銳截止屏蔽電子管和遙截止屏蔽電子管。
? ?(七)按冷卻方式分類
電子管按冷卻方式可分為水冷式電子管、風冷式電子管和自然冷卻式電子管。
電子管的三種工作狀態
電子管放大器的工作狀態決定于放大器柵極電路中所加柵偏壓Eg的大少,改變柵偏壓Eg,陽極電流中的直流分量就要發生變化。當柵極偏壓Eg等于截止柵壓Ug0的一半時,在交流信號變化的整個周期內均有陽極電流流過,陽極的直流分量最大,失真最小,可效率最低,種工作狀態我們稱甲類工作狀態。它適宜于對失真指標要求較高的放大器。當柵極電壓等于截止柵壓Ug0時,這時只有在柵極交流信號的正半周內才有陽極電流。這種工作狀態叫乙類工作狀態,在此狀態下可獲得較高的工作效率,多用于低頻推挽式放大電路。?
若柵偏壓較截止柵呀還小的話,此時只有在贍極輸入信號的近半周部分時間內才有陽極電流,這種是丙類狀態,此種狀態效率最高,但失真也最大。適宜于一些倍頻電路的應用。
基本電子管一般有三個極:
一個陰極(K)用來發射電子;
一個陽極(A)用來吸收陰極所發射的電子;
一個柵極(G)用來控制流到陽極的電子流量。
陰極發射電子的基本條件:陰極本身必須具有相當的熱量,陰極又分兩種,一種是直熱式,它是由電流直接通過陰極使陰極發熱而發射電子;另一種稱旁熱式陰極,其結構一般是一個空心金屬管,管內裝有繞成螺線形的燈絲,加上燈絲電壓使燈絲發熱從而使陰極發熱而發射電子,現在日常用的多半是種電子管.由陰極發射出來的電子穿過柵極金屬絲間的空隙而達到陽極,由于柵極比陽極離陰極近得多,因而改變柵極電位對陽極電流的影響比改變陽極電壓時大得多,這就是三極管的放大作用.換句話說就是柵極電壓對陽極電流的控制作用.我們用一個數稱跨導(S)來表示.另外還有一個參數μ來描述電子管的放大系數,它的意義是說明了柵極電壓控制陽流的能力比陽極電壓對陽流的作用大多少倍.
為了提高電子管的放大系數,在三極管的陽極和控制柵極之間另外加入一個柵極稱之為簾柵極,而構成四極管,由于簾柵極具有比陰極高很多的正電壓,因此也是一個能力很強的加速電極,它使得電子以更高的速度迅速到達陽極,這樣控制柵極的控制作用變得更為顯著.因此比三極管具有更大的放大系數.但是由于簾柵極對電子的加速作用,高速運動的電子打到陽極,這些高速電子的動能很大,將從陽極上打出所謂二次電子,這些二次電子有些將被簾柵吸收形成簾柵電流,使簾柵電流上升這會導致簾柵電壓的下降,從而導致陽極電流的下降,為此四極管的放大系數受到一定而限制.
為了解決上述矛盾,在四極管簾柵極外的兩側再加入一對與陰極相連的集射極,由于集射極的電位與陰極相同,所以對電子有排斥作用,使得電子在通過簾柵極之后在集射極的作用下按一定方向前進并形成扁形射束,這扁形電子射束的電子密度很大,從而形成了一個低壓區,從陽極上打出來的二次電子受到這個低壓區的排斥作用而被推回到陽極,從而使簾柵電流大大減少,電子管的放大能力得而加強.這種電子管我們稱為束射四極管,束射四極管不但放大系數較三極管為高,而且其陽極面積較大,允許通過較大的電流,因此現在的功放機常用到它作為功率放大.