前言
LED可以分成組件固定在兩條平行導線上,包覆樹脂密封成炮彈型,以及LED組件直接固定在印刷導線基板上,再用樹脂密封成表面封裝型兩種。
炮彈型的樹脂密封不具備鏡片功能,比較容易控制集光與集束;表面封裝型直接將LED組件固定在基板上,適合高密度封裝,雖然小型、輕量、薄型化比較有利,不過輝度卻比炮彈型低,必需使用反射器才能達成高輝度化要求;表面封裝型主要應用在照明與液晶顯示器的背光模塊等領域。
本文要以表面封裝型LED為焦點,介紹表面封裝用基板要求的特性、功能,以及設計上的經常面臨的散熱技術問題,同時探討O2PERA(Optimized OutPut by Efficient Reflection Angle)的光學設計技巧。
封裝基板的功能
表面封裝型的LED芯片通常只有米粒左右大小,基本結構如圖1所示,它是將發光組件封裝在印刷基板的電極上,再包覆樹脂密封。
制造LED芯片時印刷基板的功能之一,是將半導體device組件化,另外一個功能是讓組件產生的放射光高效率在前面反射,藉此提高LED的效率。
為提高LED組件的發光效率,基板側放射的光線高效率反射也非常重要,所以要求高反射率的基板。印刷基板鍍金或是鍍銀可以提高反射率,不過鍍金時類似藍光領域低波長光的反射率很低,鍍銀時有長期耐久性偏低的問題,因此研究人員檢討使用LED用白色基板。
LED用白色基板要求400~ 750nm,可視光全波長領域具備均勻高反射率,反射率的波長相關性很強時,LED芯片設計上會變成與設計波長相異的光源,因此要求在可視光全波長領域具備均勻的反射率。
白色基板的性能與特性
性能要求
表1是白光LED的發光機制一覽,它可以分成4大類。如表所示成為白光LED的原光波長,全部偏向藍光與近紫外低波長側。一般類似環氧樹脂基板的有機材料,紫外線等高能量光是最大敵人,光劣化極易造成環氧樹脂變色,樹脂的劣化使得可視光波長領域的反射率降低,外觀上形成略帶黃色,嚴重時甚至會變成茶色~灰色色調。
基板變色除了高能量光之外,熱也是促進變色的原因之一,熱會促進類似光劣化時的茶色系色調變色。此外在LED制程上銀膠以及金-錫接合時,基板會被加熱到150~320℃,接著還需面臨260℃的reflow高熱。雖然芯片狀LED一直到裝設在電子機器為止的熱履歷只有數秒~30秒,不過它必需在200℃左右的環境進出3~5次,基板受到該熱履歷影響加速變色,因此基板的熱耐變色性非常重要,尤其是近年高輝度LED組件的發熱非常大,動作時芯片溫度經常超過100℃,造成基板曝露在100℃高溫紫外光與藍光環境下。
基板一旦變色,LED的輝度降低,從基板反射的反射光出現色調變化,其結果導致制品壽命變短,因此LED用白色基板要求高反射率與低藍光/紫外光樹脂劣化特性,即使受熱也不會變色等特性。
基板的機械特性要求
基板的機械特性與LED的壽命無直接關系,而是涉及基板厚度精度與鉆孔等加工性等技術性課題。例如加工基板sheet(大約100×150mm)表面同時進行數百個以上封裝、樹脂密封等工程時,基板sheet加工分別利用鉆頭鉆床、銑床(Router)、模具沖拔加工,鉆頭加工與銑床加工時,鉆頭(Bit)的壽命與加工端面的毛邊會成為問題,鉆頭的磨耗則與基板制作成本有直接關連,因此要求低鉆頭磨耗性的基板。此外,加工時發生的毛邊會影響制品的良率,成為成本上升的主要原因,因此要求不會發生毛邊,加工時能夠抑制成本的基板材料。
組件的樹脂密封使用注型與轉寫成型技術,基板的厚度精度太差時,樹脂密封工程時模具與基板之間會出現間隙,進而導致密封樹脂泄漏等問題,直接影響制品的良率,其結果反映在成本,因此板厚精度成為重要的特性之一。
提高耐候性、耐變色、反射率的技術
高功率LED的散熱設計
白光LED已經開始應用在一般照明與汽車等領域,投入LED的電力也從過去數十mW提高數W等級,因此發熱問題更加表面化。
所謂熱問題是指隨著投入電力的增加,LED芯片的溫升造成光輸出降低。有效對策除了改善芯片的特性之外,搭載LED芯片的封裝材料與結構檢討也非常重要。樹脂封裝方式是目前市場的主流,由于樹脂的熱傳導率很低,因此經常成為影響熱問題的原因之一,目前常用對策是將金屬導入樹脂封裝結構,或是采用高熱傳導率陶瓷材料。
LED高功率化必需進行以下檢討,分別是:
(1)芯片大型化
(2)大電流化
(3)芯片本身的發光效率改善
(4)高效率取光封裝結構
其中最簡單的方法是增加電流量,使光量呈比例性增加,不過此時LED芯片產生的熱量會增加。圖7是電流投入LED芯片時的放射照度量測結果,如圖所示在高輸出領域放射照度呈飽和、衰減狀,主要原因是LED芯片發熱所致,為實現LED芯片高輸出化,必需進行有效的熱對策。
接著介紹應用陶瓷特性的封裝技術。
封裝的功能
封裝主要目的是保護內部組件,使內部組件與外部作電氣性連接,促進發熱的內部組件散熱。對LED芯片而言,封裝的目的是使光線高效率放射到外部,因此要求封裝材料具備高強度、高熱傳導性與高反射性。
陶瓷封裝的優點
陶瓷材料幾乎網羅上述所有要求特性,非常適合當作LED的封裝。表2是主要陶瓷材料的物性,如表2所示陶瓷材料的耐光劣化性,與耐熱性比傳統環氧樹脂更優秀。
目前高散熱封裝結構是將LED芯片固定在金屬板上周圍包覆樹脂,此時芯片材料與金屬的熱膨脹差異非常大,LED芯片封裝時與溫度變化的環境下,產生的熱歪斜極易引發LED芯片缺陷,造成發光效率降低、發熱等問題,隨著芯片大型化,未來熱歪斜勢必更嚴重。陶瓷材料的熱膨脹系數接近LED芯片,因此陶瓷被認為是解決熱歪斜最有效的材料之一。
封裝結構
照片1是高輸出LED用陶瓷封裝的實際外觀;圖8是陶瓷封裝的構造范例,圖中的反射器電鍍銀膜,可以提高光照射效率 。圖8(c)是應用多層技術,使陶瓷與反射器成形一體結構。
為了使發熱的LED芯片正常動作,必需考慮適當的散熱系統,這意味著封裝已經成為散熱組件的一部份。接著介紹有關散熱的處理方式。
封裝與散熱基板的功能
散熱設計必需考慮如何使LED芯片產生的熱透過筐體釋放到外部。圖9是LED Lamp內部的熱流與封裝內側理想熱擴散模式。
如圖9右側實線所示,高熱擴散性封裝的內側(P~Q之間)溫度分布非常平坦,熱可以擴散至封裝整體,而且還非常順暢流入封裝基板內,因此LED芯片正下方的溫度大幅下降。
圖10是利用熱模擬分析確認該狀態獲得的結果,該圖表示定常狀態溫度分布,與單位面積時的單位時間流動的熱量,亦即熱流束的分布狀況。由圖可知使用高熱傳導材料的場合,封裝內部的溫差會變小,此時并未發現熱流集中在局部,封裝內部的熱擴散性因而大幅提高。
陶瓷是由鋁或是氮化鋁制成,若與目前常用的封裝材料環氧樹脂比較,鋁質陶瓷的熱傳導率是環氧樹脂的55倍,氮化鋁陶瓷的熱傳導率是環氧樹脂的400倍。此外金屬板的熱傳導率大約是200W/mK,鋁的熱傳導率大約是400W/mK左右,要求高熱傳導率的封裝,大多使用金屬作base。
?
LED芯片接合劑的功能
半導體芯片接合劑使用的材料有環氧系、玻璃、焊錫、金共晶合金等等。LED芯片用接合劑除了高熱傳導性之外,基于接合時降低熱應力等觀點,要求低溫接合、低楊氏系數等特性,符合要求的在環氧系有“添加銀的環氧樹脂”,共晶合金則有“Au -20% Sn”等等。
接合劑附著在芯片周圍的面積幾乎與LED芯片相同 ,而且無法期待水平方向的熱擴散,只能期望垂直方向的熱傳導性。圖11是LED芯片至封裝背面的溫度差熱仿真分析的結果,如圖所示封裝使用氮化鋁陶瓷基板,與接合部溫度差,以及熱傳導性比添加銀的環氧樹脂還低的Au-Sn接合劑。
由于Au-Sn薄層化可以降低接合部的溫度差,同時有效促進熱的流動,因此業界普遍認為未來散熱設計,勢必要求接合劑必需具備高熱傳導性,與可以作薄層化接合等基本特性。
今后散熱設計與封裝構造
隨著散熱設計的進化,LED組件廠商的研究人員開始檢討LED Lamp至筐體的熱傳導,以及筐體至外部的熱傳導可行性;組件應用廠商與照明燈具廠商則應用實驗與模擬分析進行對策研究。
有關熱傳導材料,封裝材料正逐漸從樹脂切換成金屬與陶瓷材料。此外LED芯片接合部是阻礙散熱的要因之一,因此上述薄形接合技術被視為今后檢討課題之一。
有關提高筐體至外部的熱傳導,目前大多利用冷卻風扇與散熱鰭片達成散熱要求。不過基于噪音對策與窄空間化等考慮,照明燈具廠商大都不愿意使用熱交換器,因此必需提高與外部接觸面非常多的封裝基板與筐體的散熱性,具體方法例如利用遠紅外線在高熱傳導性銅層表面,形成可以促進熱放射涂抹層的可撓曲散熱膜片(film)。
根據測試結果證實可撓曲散熱膜片的散熱效果,比大小接近膜片的散熱鰭片更高,因此研究人員檢討直接將可撓曲散熱膜片黏貼在封裝基板與筐體,或是將可以促進熱放射涂抹層,直接設置在裝基板與筐體表面,試圖藉此提高散熱效果。
有關封裝結構,必需開發可以支持LED芯片磊晶(flip chip)接合的微細布線技術;有關封裝材料,雖然氮化鋁的高熱傳導化有相當進展,不過它與反射率有trade-off關系,一般認提高熱傳導性比氮化鋁差的鋁的反射特性,可以支持LED高輸出化需要,未來可望成為封裝材料之一。
?
評論
查看更多